Перечень международных стандартов аудита. Классификация международных стандартов аудита

Среди многообразных видов научных открытий особое место занимают фундаментальные открытия, изменяющие наши представления о действительности в целом, т.е. носящие мировоззренческий характер.

1. Два рода открытий

А.Эйнштейн в свое время писал, что физик-теоретик «в качестве фундамента нуждается в некоторых общих предположениях, так называемых принципах, исходя из которых он может вывести следствия. Его деятельность, таким образом, разбивается на два этапа. Во-первых, ему необходимо отыскать эти принципы, во-вторых. развивать вытекающие из этих принципов следствия. Для выполнения второй задачи он основательно вооружен еще со школы. Следовательно, если для некоторой области и соответст­венно совокупности взаимосвязей первая задача решена, то след­ствия не заставят себя ждать. Совершенно иного рода первая из названных задач, т.е. установление принципов, могущих служить основой для дедукции. Здесь не существует метода, который мохно было бы выучить и систематически применять для дости­жения цели».

Мы будем заниматься главным образом обсуждением проблем, связанных с решением задач первого рода, но для начала уточним наши представления о том, как решаются задачи второго рода.

Представим себе следующую задачу. Имеется окружность, через центр которой проведены два взаимно перпендикулярных диамет­ра. Через точку А, находящуюся на одном из диаметров на расстоянии 2/3 от центра окружности О, проведем прямую, параллельную другому диаметру, а из точки В пересечения этой прямой с окружностью опустим перпендикуляр на второй диа­метр, обозначив их точку пересечения через С. Нам необходимо выразить длину отрезка АС через функцию от радиуса.

Как мы будем решать эту школьную задачу?

Обратимся для этого к определенным принципам геометрии, восстановим цепочку теорем. При этом мы пытаемся использовать все имеющиеся у нас данные. Заметим, что раз проведенные диаметры взаимно нерпендикулярны, треугольник ОАС является прямоугольным. Величина ОА=2/Зr. Постараемся теперь найти длину второго катета, чтобы затем применить теорему Пифагора и определить длину гипотенузы АС. Можно попробовать исполь­зовать и какие-то другие методы. Но вдруг, внимательно посмот­рев на рисунок, мы обнаруживаем, что ОАВС – это прямоугольник, у которого, как известно, диагонали равны, т.е. АС=ОВ. 0В же равно радиусу окружности, следовательно, без всяких вычислений ясно, что АС= r.

Вот оно – красивое и психологически интересное решение задачи.

В приведенном примере важно следующее.

Во-первых, задачи подобного рода обычно относятся к четко определенной предметной области. Решая их, мы ясно пред­ставляем себе, где, собственно, надо искать решение. В данном случае мы не задумываемся над тем, правильны ли основания Евклидовой геометрии, не нужно ли придумать какую-то дру­гую геометрию, какие-то особые принципы, чтобы решить задачу. Мы сразу истолковываем ее как относящуюся к области Евклидовой геометрии.

Во-вторых, эти задачи необязательно стандартные, алгоритми­ческие. В принципе их решение требует глубокого понимания специфики рассматриваемых объектов, развитой профессио­нальной интуиции. Здесь, следовательно, нужна некоторая профессиональная тренированность. В процессе решения за­дач такого рода мы открываем новый путь. Мы замечаем «вдруг», что изучаемый объект можно рассматривать как пря­моугольник и вовсе не нужно выделять в качестве элементар­ного объекта для формирования правильного пути решения задачи прямоугольный треугольник.

Конечно, приведенная выше задача очень проста. Она нужна лишь для того, чтобы в целом очертить тип задач второго рода. Но среди таких задач существуют и неизмеримо более сложные, решение которых имеет большое значение для развития науки.

Рассмотрим, например, открытие новой планеты Леверье и Адам-сом. Конечно, это открытие – большое событие в науке, тем более если учесть, как оно было сделано:

Сначала были обсчитаны траектории планет;

Потом было обнаружено, что они не совпадают с наблюдаемыми; – затем было высказано предположение о существовании новой планеты;

Потом навели телескоп в соответствующую точку пространства и... обнаружили там планету.

Но почему это большое открытие можно отнести только к открытиям второго рода?

Все дело в том, что оно было совершено на четком фундаменте уже разработанной небесной механики.

Хотя задачи второго рода, конечно, можно подразделять на подклассы различной сложности, Эйнштейн был прав, отделяя их от фундаментальных проблем.

Ведь последние требуют открытия новых фунда­ментальных принципов, которые не могут быть получены какой-либо дедукцией из существую­щих принципов.

Конечно, между задачами первого и второго рода существуют промежуточные инстанции, но мы не будем их здесь рассматривать, а перейдем сразу к задачам первого рода.

Таких проблем возникало перед человечеством в общем-то не так уж много, но решения их всякий раз означали громадный прогресс в развитии науки и культуры в целом. Они связаны с созданием таких фундаментальных научных теорий и концепций, как геометрия Евклида гелиоцентрическая теория Коперника, классическая механика Ньютона, геометрия Лобачевского, генетика Менделя, теория эволюции Дарвина, теория относительности Эйнштейна, квантовая механика, структурная лингвистика.

Все они характеризуются тем, что интеллекту­альная база, на которой они создавались, в от­личие от области открытий второго рода никогда не являлась строго ограниченной.

Если говорить о психологическом контексте открытий разных «"ы^^, то, вероятно, он одинаков. – В самом поверхностном виде его можно охарактеризовать как непосредственное видение, открытие в полном смысле этого слова. Человек, как считал Декарт, «вдруг» видит, что пробле­му нужно рассматривать именно так, а не иначе.

Далее следует заметить, что открытие никогда не бывает одноактным, а носит, так сказать, «челночный» характер. Сначала присутствует некое ощущение идеи; потом она про­ясняется путем выведения из нее определенных следствий, которые, как правило, уточняют идею; затем из новой моди­фикации выводятся новые следствия и т.д.

Но в гносеологическом плане открытия первого и второго родов различаются радикальнейшим образом.


Среди многообразных видов научных открытий особое место занимают фундаментальные открытия, изменяющие наши представления о действительности в целом, т.е. носящие мировоззренческий характер.

Два рода открытий

А. Эйнштейн в свое время писал, что физик-теоретик «в качестве фундамента нуждается в некоторых общих предположениях, так называемых принципах, исходя из которых он может вывести следствия. Его деятельность, таким образом, разбивается на два этапа. Во-первых, ему необходимо отыскать эти принципы, во-вторых, - развивать вытекающие из этих принципов следствия. Для выполнения второй задачи он основательно вооружен еще со школы. Следовательно, если для некоторой области и, соответственно, совокупности взаимосвязей первая задача решена, то следствия не заставят себя ждать. Совершенно иного рода первая из названных задач, т.е. установление принципов, могущих служить основой для дедукции. Здесь не существует метода, который можно было бы выучить и систематически применять для достижения цели».

Мы будем заниматься главным образом обсуждением проблем, связанных с решением задач первого рода, но для начала уточним наши представления о том, как решаются задачи второго рода.

Представим себе следующую задачу. Имеется окружность, через центр которой проведены два взаимно перпендикулярных диаметра. Через точку А, находящуюся на одном из диаметров на расстоянии 2/3 от центра окружности О, проведем прямую, параллельную другому диаметру, а из точки В - пересечения этой прямой с окружностью опустим перпендикуляр на второй диаметр, обозначив их точку пересечения через К. Нам необходимо выразить длину отрезка АК через функцию от радиуса.

Как мы будем решать эту школьную задачу?

Обратившись для этого к определенным принципам геометрии, восстановим цепочку теорем. При этом мы пытаемся использовать все имеющиеся у нас данные. Заметим, что, раз проведенные диаметры взаимно перпендикулярны, треугольник ОАК является прямоугольным. Величина ОА = 2/3r. Постараемся теперь найти длину второго катета, чтобы затем применить теорему Пифагора и определить длину гипотенузы АК. Можно попробовать использовать и какие-то другие методы. Но вдруг, внимательно посмотрев на рисунок, мы обнаруживаем, что ОАВК - это прямоугольник, у которого, как известно, диагонали равны, т.е. АК = ОВ. ОВ же равно радиусу окружности, следовательно, без всяких вычислений ясно, что АК = r.

Вот оно - красивое и психологически интересное решение задачи.

В приведенном примере важно следующее.

Во-первых, задачи подобного рода обычно относятся к четко определенной предметной области. Решая их, мы ясно представляем себе, где, собственно, надо искать решение. В данном случае мы не задумываемся над тем, правильны ли основания евклидовой геометрии, не нужно ли придумать какую-то другую геометрию, какие-то особые принципы, чтобы решить задачу. Мы сразу истолковываем ее как относящуюся к области евклидовой геометрии.

Во-вторых, эти задачи - необязательно стандартные, алгоритмические. В принципе их решение требует глубокого понимания специфики рассматриваемых объектов, развитой профессиональной интуиции. Здесь, следовательно, нужна некоторая профессиональная тренированность. В процессе решения задач такого рода мы открываем новый путь. Мы замечаем «вдруг», что изучаемый объект можно рассматривать как прямоугольник и вовсе не нужно выделять в качестве элементарного объекта для формирования правильного пути решения задачи прямоугольный треугольник.

Конечно, приведенная выше задача очень проста. Она нужна лишь для того, чтобы в целом очертить тип задач второго рода. Но среди таких задач существуют и неизмеримо более сложные, решение которых имеет большое значение для развития науки.

Рассмотрим, например, открытие новой планеты У.Леверье и Дж.Адамсом. Конечно, это открытие - большое событие в науке, тем более если учесть, как оно было сделано:

Сначала были обсчитаны траектории планет;

Потом было обнаружено, что они не совпадают с наблюдаемыми;

Затем было высказано предположение о существовании новой планеты;

Потом навели телескоп в соответствующую точку пространства и... обнаружили там планету.

Но почему это большое открытие можно отнести только к открытиям второго рода?

Все дело в том, что оно было совершено на четком фундаменте уже разработанной небесной механики.

Хотя задачи второго рода, конечно, можно подразделять на подклассы различной сложности, А.Эйнштейн был прав, отделяя их от фундаментальных проблем.

Ведь последние требуют открытия новых фундаментальных принципов, которые не могут быть получены какой-либо дедукцией из существующих принципов.

Конечно, между задачами первого и второго рода существуют промежуточные инстанции, но мы не будем их здесь рассматривать, а перейдем сразу к задачам первого рода.

Таких проблем возникало перед человечеством в общем-то не так уж много, но решения их всякий раз означали громадный прогресс в развитии науки и культуры в целом. Они связаны с созданием таких фундаментальных научных теорий и концепций, как геометрия Евклида, гелиоцентрическая теория Коперника, классическая механика Ньютона, геометрия Лобачевского, генетика Менделя, теория эволюции Дарвина, теория относительности Эйнштейна, квантовая механика, структурная лингвистика.

Все они характеризуются тем, что интеллектуальная база, на которой они создавались, в отличие от области открытий второго рода, никогда не являлась строго ограниченной.

Если говорить о психологическом контексте открытий разных классов, то, вероятно, он одинаков.

В самом поверхностном виде его можно охарактеризовать как непосредственное видение, открытие в полном смысле этого слова. Человек, как считал Р. Декарт, «вдруг» видит, что проблему нужно рассматривать именно так, а не иначе.

Далее, следует заметить, что открытие никогда не бывает одноактным, а носит, так сказать, «челночный» характер. Сначала присутствует некое ощущение идеи; потом она проясняется путем выведения из нее определенных следствий, которые, как правило, уточняют идею; затем из новой модификации выводятся новые следствия и т.д.

Но в гносеологическом плане открытия первого и второго родов различаются радикальнейшим образом.

Историческая обусловленность фундаментальных открытий

Попытаемся представить себе решение задач первого рода.

Выдвижение новых фундаментальных принципов всегда связывалось с деятельностью гениев, с озарением, с какими-то тайными характеристиками человеческой психики.

Великолепным подтверждением такого восприятия этого рода открытий является борьба ученых за приоритет. Сколько было в истории острейших ситуаций во взаимоотношениях между учеными, связанных с их уверенностью в том, что никто другой не мог получить достигнутые ими результаты.

Например, известный социалист-утопист Ш.Фурье претендовал на то, что он раскрыл природу человека, открыл, как надо устроить общество, чтобы в нем не было никаких социальных конфликтов. Он был убежден, что если бы родился раньше своего времени, то помог бы людям решить все их проблемы без войн и идеологических конфронтации. В этом смысле он связывал свое открытие со своими индивидуальными способностями.

Как же все-таки появляются фундаментальные открытия? В какой мере их осуществление связано с рождением гения, проявлением его уникального дарования?

Обращаясь к истории науки, мы видим, что такого рода открытия действительно осуществляются незаурядными людьми. Вместе с тем обращает на себя внимание тот факт, что многие из них делались независимо друг от друга несколькими учеными практически в одно время.

Н.И.Лобачевский, Ф.Гаусс, Я.Больяи, не говоря уже о математиках, которые развивали основы такой геометрии с меньшим успехом, т.е. целая группа ученых, практически одновременно пришли к одним и тем же фундаментальным результатам.

Две тысячи лет люди бились над этой проблемой пятого постулата геометрии Евклида, и «вдруг», в течение буквально 10 лет, ее разрешает сразу десяток людей.

Ч. Дарвин впервые обнародовал свои идеи об эволюции видов в докладе, прочитанном в 1858 г. на заседании Линнеевского общества в Лондоне. На этом же заседании выступил и Уоллес с изложением результатов исследований, которые, по существу, совпадали с дарвиновскими.

Специальная теория относительности носит, как известно, имя А.Эйнштейна, который изложил ее принципы в 1905 г. Но в том же 1905 г. подобные результаты были опубликованы А.Пуанкаре.

Совершенно удивительно переоткрытие менделевской генетики в 1900 г. одновременно и независимо друг от друга Э. Чермаком, К. Корренсом и X. де Фризом.

Подобных ситуаций можно найти в истории науки огромное количество.

И коль скоро дело обстоит так, что фундаментальные открытия делаются почти одновременно разными учеными, то, следовательно, имеется их историческая обусловленность.

В чем же она в таком случае заключается?

Пытаясь ответить на этот вопрос, сформулируем следующее общее положение.

Фундаментальные открытия всегда возникают в результате решения фундаментальных проблем.

Прежде всего обратим внимание на то, что когда мы говорим о фундаментальных проблемах, мы имеем в виду такие вопросы, которые касаются наших общих представлений о действительности, ее познании, о системе ценностей, руководящей нашим поведением.

Фундаментальные открытия часто трактуются как решения частных задач и не связываются с какими-либо фундаментальными проблемами.

Скажем, на вопрос, как была создана теория Коперника, отвечают, что исследования показывали несоответствие наблюдений и тех предсказаний, которые делались на базе птолемеевской геоцентрической системы, и поэтому возник конфликт между новыми данными и старой теорией.

На вопрос, как была создана неевклидова геометрия, дается такой ответ: в результате решения проблемы доказательства пятого постулата геометрии Евклида, который никак не могли доказать.