Списание испорченного товара. Списание товаров на складе

Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:
, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.

После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность :

Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ : , абсолютная погрешность вычислений , относительная погрешность вычислений

Следующий пример для самостоятельного решения:

Пример 4

в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции в точке

Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах. Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций . Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.


Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:

Таким образом :

После предварительного анализа градусы необходимо перевести в радианы . Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы: (формулы можно найти в той же таблице).

Дальнейшее шаблонно:

Таким образом : (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ:

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендую просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка , куда ж без них. На вышеупомянутом уроке функцию двух переменных я обозначал через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и я постараюсь рассмотреть все встречающиеся формулировки.

Пример 8

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы предыдущего параграфа. Переменная только прибавилась. Да что говорить, сам алгоритм решения будет принципиально таким же !

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Колобок сам просится, чтобы его съели :
,

Число 3,95 представим в виде . Дошла очередь и до второй половины Колобка:
,

И не смотрите на всякие лисьи хитрости, Колобок есть - надо его съесть.

Вычислим значение функции в точке :

Дифференциал функции в точке найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: , абсолютная погрешность: , относительная погрешность:

Пример 9

Вычислить приближенное значение функции в точке с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными. Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: .

Общая закономерность таков а - чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10


Решение: Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: . Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .
Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

;


.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527

Найдем относительную погрешность вычислений:

Ответ: ,

Как раз иллюстрация вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Как уже отмечалось, наиболее частный гость в данном типе заданий - это какие-нибудь корни. Но время от времени встречаются и другие функции. И заключительный простой пример для релаксации:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если

Решение ближе к дну страницы. Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения.

Если честно, немного утомился, поскольку материал был нудноватый. Непедагогично это было говорить в начале статьи, но сейчас-то уже можно =) Действительно, задачи вычислительной математики обычно не очень сложны, не очень интересны, самое важное, пожалуй, не допустить ошибку в обычных расчётах.

Да не сотрутся клавиши вашего калькулятора!

Решения и ответы:

Пример 2 :

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Ответ:

Пример 4:

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Вычислим более точное значение функции с помощью микрокалькулятора:

Абсолютная погрешность:

Относительная погрешность:


Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений

Пример 5:

Решение: Используем формулу:

В данном случае: , ,


Таким образом :

Ответ:

Пример 7:

Решение: Используем формулу:
В данном случае: , ,

3.1 Среднеарифметическая погрешность. Как уже отмечалось раньше, измерения принципиально не могут быть абсолютно точными. Поэтому в ходе измерения возникает задача об определении интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Такой интервал указывают в виде абсолютной ошибки измерения.

Если предположить, что грубые промахи в измерениях устранены, а систематические ошибки сведены к минимуму тщательной настройкой приборов и всей установки и не являются определяющими, то результаты измерений будут, в основном, содержать только случайные погрешности, которые являются знакопеременными величинами. Поэтому, если проведено несколько повторных измерений одной и той же величины, то наиболее вероятным значением измеряемой величины является ее среднеарифметическое значение:

Средней абсолютной ошибкой называется среднеарифметическое модулей абсолютных ошибок отдельных измерений:

Последнее неравенство обычно принято записывать как окончательный результат измерения следующим образом:

(5)

где абсолютная погрешность a ср должна вычисляться (округляться) с точностью до одной-двух значащих цифр. Абсолютная ошибка показывает, в каком знаке числа содержатся неточности, поэтому в выражении для а ср оставляют все верные цифры и одну сомнительную. То есть среднее значение и средняя ошибка измеряемой величины должны вычисляться до цифры одного и того же разряда. Например: g = (9,78 ± 0,24) м/с 2 .



Относительная погрешность. Абсолютная ошибка определяет интервал наиболее вероятных значений измеряемой величины, но не характеризует степень точности произведенных измерений. Например, расстояние между населенными пунктами, измеренное с точностью до нескольких метров, можно отнести к весьма точным измерениям, в то время как измерение диаметра проволоки с точностью до 1 мм, в большинстве случаев будет являться весьма приближенным измерением.

Степень точности проведенных измерений характеризует относительная погрешность.

Средней относительной погрешностью или просто относительной ошибкой измерения называется отношение средней абсолютной ошибки измерения к среднему значению измеряемой величины:

Относительная ошибка является безразмерной величиной и обычно выражается в процентах.

3.2 Погрешность метода или приборная погрешность. Среднеарифметическое значение измеряемой величины тем ближе к истинному, чем больше проведено измерений, при этом абсолютная погрешность измерения с увеличением их числа стремится к значению, которое определяется методом измерения и техническими характеристиками используемых приборов.

Погрешность метода или приборную погрешность можно рассчитать по одноразовому измерению, зная класс точности прибора или другие данные технического паспорта прибора, в котором указывается либо класс точности прибора, либо его абсолютная или относительная погрешность измерения.

Класс точности прибора выражает в процентах номинальную относительную ошибку прибора, то есть относительную ошибку измерения, когда измеряемая величина равна предельному для данного прибора значению

Абсолютная погрешность прибора не зависит от значения измеряемой величины.

Относительная погрешность прибора (по определению):

(10)

откуда видно, что относительная приборная ошибка тем меньше, чем ближе значение измеряемой величины к пределу измерения данного прибора. Поэтому ре­комендуется подбирать приборы так, чтобы измеряемая величина составляла 60 -90% от величины, на которую рассчитан прибор. При работе с многопредельными приборами тоже следует стремиться к тому, чтобы отсчет производился во второй половине шкалы.

При работе с простыми приборами (линейка, мензурка и т.п.), классы точности и погрешности которых не определены техническими характеристиками, абсолютную погрешность прямых измерений принимают равной половине цены деления данного прибора. (Ценой деления называют значение измеряемой величины при показаниях прибора в одно деление).

Приборную погрешность косвенных измерений можно рассчитать, используя правила приближенных вычислений. В основе вычисления погрешности косвенных измерений лежат два условия (предположения):

1. Абсолютные ошибки измерений всегда очень малы по сравнению с измеряемыми величинами. Поэтому абсолютные ошибки (в теории) можно рассматривать как бесконечно малые приращения измеряемых величин, и они могут быть заменены соответствующими дифференциалами.

2. Если физическая величина, которую определяют косвенным путем, является функцией одной или нескольких непосредственно измеряемых величин, то абсолютная ошибка функции, обусловленная бесконечно малыми приращениями, является также бесконечно малой величиной.

При указанных допущениях абсолютную и относительную погрешность можно рассчитать, используя известные выражения из теории дифференциального исчисления функций многих переменных:

(11)
(12)

Абсолютные ошибки непосредственных измерений могут иметь знаки "плюс" или "минус", но какой именно - неизвестно. Поэтому при определении погрешностей рассматривается наиболее невыгодный случай, когда ошибки прямых изме­рений отдельных величин имеют один и тот же знак, то есть абсолютная ошибка имеет максимальное значение. Поэтому при расчете приращений функции f(x 1 ,x 2 ,…,х n) по формулам (11) и (12) частные приращения должны складываться по абсолютной величине. Таким образом, используя приближение Dх i ≈ dx i , и вы­ражения (11) и (12), для бесконечно малых приращений можно записать:

(13)
(14)

Здесь: а - косвенно измеряемая физическая величина, то есть определяемая по расчетной формуле, - абсолютная ошибка ее измерения, х 1 , х 2 ,...х n ; Dх 1, Dx 2 ,..., Dх n , - физические величины прямых измерений и их абсолютные ошибки соответственно.

Таким образом: а) абсолютная ошибка косвенного метода измерения равна сумме модулей произведений частных производных функции измерения и соответствующих абсолютных ошибок прямых измерений; б) относительная ошибка косвенного метода измерения равна сумме модулей дифференциалов от логарифма натурального функции измерения, определяемой расчетной формулой.

Выражения (13) и (14) позволяют рассчитать абсолютные и относительные погрешности по одноразовому измерению. Заметим, что для сокращения расчетов по указанным формулам достаточно рассчитать одну из погрешностей (абсолютную или относительную), а другую рассчитать, используя простую связь между ними:

(15)

На практике чаще пользуются формулой (13), так как при логарифмировании расчетной формулы произведения различных величин преобразуются в соответствующие суммы, а степенные и показательные функции преобразуются в произведения, что намного упрощает процесс дифференцирования.

Для практического руководства по расчету погрешности косвенного метода измерения можно пользоваться следующим правилом:

Чтобы вычислить относительную ошибку косвенного метода измерения, нужно:

1. Определить абсолютные ошибки (приборные или средние) прямых измерений.

2. Прологарифмировать расчетную (рабочую) формулу.

3. Принимая величины прямых измерений за независимые переменные, найти полный дифференциал от полученного выражения.

4. Сложить все частные дифференциалы по абсолютной величине, заменив в них дифференциалы переменных соответствующими абсолютными ошибками прямых измерений.

Например, плотность тела цилиндрической формы вычисляется по формуле:

(16)

где m, D, h - измеряемые величины.

Получим формулу для расчета погрешностей.

1. Исходя из используемого оборудования, определяем абсолютные погрешности измерения массы, диаметра и высоты цилиндра (∆m, ∆D, ∆h соответственно).

2. Логарифмируем выражение (16):

3. Дифференцируем:

4. Заменяя дифференциал независимых переменных на абсолютные ошибки и складывая модули частных приращений, получаем:

5. Используя численные значения m, D, h, D, m, h , рассчитываем Е.

6. Вычисляем абсолютную ошибку

где r рассчитано по формуле (16).

Предлагаем самим убедиться, что в случае полого цилиндра или трубки с внутренним диаметром D 1 и внешним диаметром D 2

К расчету ошибки метода измерения (прямого или косвенного) приходится прибегать в случаях, когда многократные измерения либо невозможно провести в одних и тех же условиях, либо они занимают много времени.

Если определение погрешности измерения является принципиальной задачей, то обычно измерения проводят многократно и вычисляют и среднеарифметическую погрешность и погрешность метода (приборную погрешность). В окончательном результате указывают большую из них.

О точности вычислений

Ошибка результата определяется не только неточностями измерений но и неточностями вычислений. Вычисления необходимо проводить так, чтобы их ошибка была на порядок меньше ошибки результата измерений. Для этого вспомним правила математического действия с приближёнными числами.

Результаты измерений – приближённые числа. В приближённом числе все цифры должны быть верными. Последней верной цифрой приближённого числа считается такая цифра, ошибка в которой не превышает одной единицы её разряда. Все цифры от 1 до 9 и 0, если он стоит в середине или в конце числа, называются значащими. В числе 2330 - 4 значащих цифры, а в числе 6,1×10 2 – только две, в числе 0,0503 – три, так как нули слева от пятёрки незначащие. Запись числа 2,39 означает, что верны все знаки до второго после запятой, а запись в 1,2800 – что верно также и третий и четвёртый знаки. В числе 1,90 три значащих цифры и это значит, что при измерении мы учитывали не только единицы, но и десятые и сотые, а в числе 1,9 – только две значащих цифры и это значит, что мы учитывали целые и десятые и точность этого числа в 10 раз меньше.

Правила округления чисел

При округлении оставляют лишь верные знаки, остальные отбрасываются.

1. Округление достигается простым отбрасыванием цифр, если первая из отбрасываемых цифр меньше, чем 5.

2. Если первая из отбрасываемых цифр больше, чем 5, то последняя цифра увеличивается на единицу. Последняя цифра увеличивается также и в том случае, когда первая из отбрасываемых цифр 5, а за ней есть одна или несколько цифр, отличных от нуля.

Например, различные округления числа 35,856 будут: 35,9; 36.

3. Если отбрасываемая цифра 5, а за ней нет значащих цифр, то округление производится на ближайшее чётное число, то есть, последняя сохраняемая цифра остаётся неизменной, если она чётная и увеличивается на единицу, если она нечётная.

Например, 0,435 округляем до 0,44; 0,365 округляем до 0,36.

Вследствие погрешностей, присущих средству измерений, выбранному методу и методике измерений, отличия внешних условий, в которых выполняется измерение, от установленных, и других причин результат практически каждого измерения отягощен погрешностью. Эта погрешность вычисляется или оценивается и приписывается полученному результату.

Погрешность результата измерений (кратко — погрешность измерений) — отклонение результата измерения от истинного значения измеряемой величины.

Истинное значение величины вследствие наличия погрешностей остается неизвестным. Его применяют при решении теоретических задач метрологии. На практике пользуются действительным значением величины, которое заменяет истинное значение.

Погрешность измерения (Δх) находят по формуле:

x = x изм. - x действ. (1.3)

где х изм. — значение величины, полученное на основании измерений; х действ. — значение величины, принятое за действительное.

За действительное значение при однократных измерениях нередко принимают значение, полученное с помощью образцового средства измерений, при многократных измерениях — среднее арифметическое из значений отдельных измерений, входящих в данный ряд.

Погрешности измерения могут быть классифицированы по следующим признакам:

По характеру проявления — систематические и случайные;

По способу выражения — абсолютные и относительные;

По условиям изменения измеряемой величины — статические и динамические;

По способу обработки ряда измерений — средние арифметические и средние квадратические;

По полноте охвата измерительной задачи — частные и полные;

По отношению к единице физической величины — погрешности воспроизведения единицы, хранения единицы и передачи размера единицы.

Систематическая погрешность измерения (кратко — систематическая погрешность) — составляющая погрешности результата измерения, остающаяся постоянной для данного ряда измерений или же закономерно изменяющаяся при повторных измерениях одной и той же физической величины.

По характеру проявления систематические погрешности подразделяются на постоянные, прогрессивные и периодические. Постоянные систематические погрешности (кратко — постоянные погрешности) — погрешности, длительное время сохраняющие свое значение (например, в течение всей серии измерений). Это наиболее часто встречающийся вид погрешности.

Прогрессивные систематические погрешности (кратко — прогрессивные погрешности) — непрерывно возрастающие или убывающие погрешности (например, погрешности от износа измерительных наконечников, контактирующих в процессе шлифования с деталью при контроле ее прибором активного контроля).


Периодическая систематическая погрешность (кратко — периодическая погрешность) — погрешность, значение которой является функцией времени или функцией перемещения указателя измерительного прибора (например, наличие эксцентриситета в угломерных приборах с круговой шкалой вызывает систематическую погрешность, изменяющуюся по периодическому закону).

Исходя из причин появления систематических погрешностей, различают инструментальные погрешности, погрешности метода, субъективные погрешности и погрешности вследствие отклонения внешних условий измерения от установленных методиками.

Инструментальная погрешность измерения (кратко — инструментальная погрешность) является следствием ряда причин: износ деталей прибора, излишнее трение в механизме прибора, неточное нанесение штрихов на шкалу, несоответствие действительного и номинального значений меры и др.

Погрешность метода измерений (кратко — погрешность метода) может возникнуть из-за несовершенства метода измерений или допущенных его упрощений, установленных методикой измерений. Например, такая погрешность может быть обусловлена недостаточным быстродействием применяемых средств измерений при измерении параметров быстропротекающих процессов или неучтенными примесями при определении плотности вещества по результатам измерения его массы и объема.

Субъективная погрешность измерения (кратко — субъективная погрешность) обусловлена индивидуальными погрешностями оператора. Иногда эту погрешность называют личной разностью. Она вызывается, например, запаздыванием или опережением принятия оператором сигнала.

Погрешность вследствие отклонения (в одну сторону) внешних условий измерения от установленных методикой измерения приводит к возникновению систематической составляющей погрешности измерения.

Систематические погрешности искажают результат измерения, поэтому они подлежат исключению, насколько это возможно, путем введения поправок или юстировкой прибора с доведением систематических погрешностей до допустимого минимума.

Неисключенная систематическая погрешность (кратко — неисключенная погрешность) — это погрешность результата измерений, обусловленная погрешностью вычисления и введения поправки на действие систематической погрешности, или небольшой систематической погрешностью, поправка на действие которой не введена вследствие малости.

Иногда этот вид погрешности называют неисключенными остатками систематической погрешности (кратко — неисключенные остатки). Например, при измерении длины штрихового метра в длинах волн эталонного излучения выявлено несколько неисключенных систематических погрешностей (i): из-за неточного измерения температуры — 1 ; из-за неточного определения показателя преломления воздуха — 2 , из-за неточного значения длины волны — 3 .

Обычно учитывают сумму неисключенных систематических погрешностей (устанавливают их границы). При числе слагаемых N ≤ 3 границы неисключенных систематических погрешностей вычисляют по формуле

При числе слагаемых N ≥ 4 для вычислений используют формулу

(1.5)

где k — коэффициент зависимости неисключенных систематических погрешностей от выбранной доверительной вероятности Р при их равномерном распределении. При Р = 0,99, k = 1,4, при Р = 0,95, k = 1,1.

Случайная погрешность измерения (кратко — случайная погрешность) — составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) в серии измерений одного и того же размера физической величины. Причины случайных погрешностей: погрешности округления при отсчете показаний, вариация показаний, изменение условий измерений случайного характера и др.

Случайные погрешности вызывают рассеяние результатов измерений в серии.

В основе теории погрешностей лежат два положения, подтверждаемые практикой:

1. При большом числе измерений случайные погрешности одинакового числового значения, но разного знака, встречаются одинаково часто;

2. Большие (по абсолютному значению) погрешности встречаются реже, чем малые.

Из первого положения следует важный для практики вывод: при увеличении числа измерений случайная погрешность результата, полученного из серии измерений, уменьшается, так как сумма погрешностей отдельных измерений данной серии стремится к нулю, т. е.

(1.6)

Например, в результате измерений получен ряд значений электрического сопротивления (в которые введены поправки на действия систематических погрешностей): R 1 = 15,5 Ом, R 2 = 15,6 Ом, R 3 = 15,4 Ом, R 4 = 15,6 Ом и R 5 = 15,4 Ом. Отсюда R = 15,5 Ом. Отклонения от R (R 1 = 0,0; R 2 = +0,1 Ом, R 3 = -0,1 Ом, R 4 = +0,1 Ом и R 5 = -0,1 Ом) представляют собой случайные погрешности отдельных измерений в данной серии. Нетрудно убедиться, что сумма R i = 0,0. Это свидетельствует о том, что погрешности отдельных измерений данного ряда вычислены правильно.

Несмотря на то, что с увеличением числа измерений сумма случайных погрешностей стремится к нулю (в данном примере она случайно получилась равной нулю), обязательно производится оценка случайной погрешности результата измерений. В теории случайных величин характеристикой рассеяния значений случайной величины служит дисперсия о2. "|/о2 = а называют средним квадратическим отклонением генеральной совокупности или стандартным отклонением.

Оно более удобно, чем дисперсия, так как его размерность совпадает с размерностью измеряемой величины (например, значение величины получено в вольтах, среднее квадратическое отклонение тоже будет в вольтах). Так как в практике измерений имеют дело с термином «погрешность», для характеристики ряда измерений следует применять производный от него термин «средняя квадратическая погрешность». Характеристикой ряда измерений может служить средняя арифметическая погрешность или размах результатов измерений.

Размах результатов измерений (кратко — размах) — алгебраическая разность наибольшего и наименьшего результатов отдельных измерений, образующих ряд (или выборку) из n измерений:

R n = X max - Х min (1.7)

где R n — размах; X max и Х min — наибольшее и наименьшее значения величины в данном ряду измерений.

Например, из пяти измерений диаметра d отверстия значения R 5 = 25,56 мм и R 1 = 25,51 мм оказались максимальным и минимальным его значением. В этом случае R n = d 5 — d 1 = 25,56 мм — 25,51 мм = 0,05 мм. Это означает, что остальные погрешности данного ряда менее 0,05 мм.

Средняя арифметическая погрешность отдельного измерения в серии (кратко — средняя арифметическая погрешность) — обобщенная характеристика рассеяния (вследствие случайных причин) отдельных результатов измерений (одной и той же величины), входящих в серию из n равноточных независимых измерений, вычисляется по формуле

(1.8)

где Х і — результат і-го измерения, входящего в серию; х — среднее арифметическое из n значений величины: |Х і - X| — абсолютное значение погрешности i-го измерения; r — средняя арифметическая погрешность.

Истинное значение средней арифметической погрешности р определяется из соотношения

р = lim r, (1.9)

При числе измерений n > 30 между средней арифметической (r) и средней квадратической (s) погрешностями существуют соотношения

s = 1,25 r; r и= 0,80 s. (1.10)

Преимущество средней арифметической погрешности — простота ее вычисления. Но все же чаще определяют среднюю квадратическую погрешность.

Средняя квадратическая погрешность отдельного измерения в серии (кратко — средняя квадратическая погрешность) — обобщенная характеристика рассеяния (вследствие случайных причин) отдельных результатов измерений (одной и той же величины), входящих в серию из п равноточных независимых измерений, вычисляемая по формуле

(1.11)

Средняя квадратическая погрешность для генеральной выборки о, являющаяся статистическим пределом S, может быть вычислена при /і-мх > по формуле:

Σ = lim S (1.12)

В действительности число измерений всегда ограничено, поэтому вычисляется не σ, а ее приближенное значение (или оценка), которым является s. Чем больше п, тем s ближе к своему пределу σ.

При нормальном законе распределения вероятность того, что погрешность отдельного измерения в серии не превзойдет вычисленную среднюю квадратическую погрешность, невелика: 0,68. Следовательно, в 32 случаях из 100 или 3 случаях из 10 действительная погрешность может быть больше вычисленной.


Рисунок 1.2 Уменьшение значения случайной погрешности результата многократного измерения при увеличении числа измерений в серии

В серии измерений существует зависимость между средней квадратической погрешностью отдельного измерения s и средней квадратической погрешностью арифметического среднего S x:

которую нередко называют «правилом У n». Из этого правила следует, что погрешность измерений вследствие действия случайных причин может быть уменьшена в уn раз, если выполнять n измерений одного размера какой-либо величины, а за окончательный результат принимать среднее арифметическое значение (рис. 1.2).

Выполнение не менее 5 измерений в серии дает возможность уменьшить влияние случайных погрешностей более чем в 2 раза. При 10 измерениях влияние случайной погрешности уменьшается в 3 раза. Дальнейшее увеличение числа измерений не всегда экономически целесообразно и, как правило, осуществляется лишь при ответственных измерениях, требующих высокой точности.

Средняя квадратическая погрешность отдельного измерения из ряда однородных двойных измерений S α вычисляется по формуле

(1.14)

где x" i и х"" i — і-ые результаты измерений одного размера величины при прямом и обратном направлениях одним средством измерений.

При неравноточных измерениях среднюю квадратическую погрешность арифметического среднего в серии определяют по формуле

(1.15)

где p i — вес і-го измерения в серии неравноточных измерений.

Среднюю квадратическую погрешность результата косвенных измерений величины Y, являющейся функцией Y = F (X 1 , X 2 , X n), вычисляют по формуле

(1.16)

где S 1 , S 2 , S n — средние квадратические погрешности результатов измерений величин X 1 , X 2 , X n .

Если для большей надежности получения удовлетворительного результата проводят несколько серий измерений, среднюю квадратическую погрешность отдельного измерения из m серий (S m) находят по формуле

(1.17)

Где n — число измерений в серии; N — общее число измерений во всех сериях; m — число серий.

При ограниченном числе измерений часто необходимо знать погрешность средней квадратической погрешности. Для определения погрешности S, вычисляемой по формуле (2.7), и погрешности S m , вычисляемой по формуле (2.12), можно воспользоваться следующими выражениями

(1.18)

(1.19)

где S и S m — средние квадратические погрешности соответственно S и S m .

Например, при обработке результатов ряда измерений длины х получены

= 86 мм 2 при n = 10,

= 3,1 мм

= 0,7 мм или S = ±0,7 мм

Значение S = ±0,7 мм означает, что из-за погрешности вычисления s находится в пределах от 2,4 до 3,8 мм, следовательно, десятые доли миллиметра здесь ненадежны. В рассмотренном случае надо записать: S = ±3 мм.

Чтобы иметь большую уверенность в оценке погрешности результата измерений, вычисляют доверительную погрешность или доверительные границы погрешности. При нормальном законе распределения доверительные границы погрешности вычисляют как ±t-s или ±t-s x , где s и s x — средние квадратические погрешности соответственно отдельного измерения в серии и среднего арифметического; t — число, зависящее от доверительной вероятности Р и числа измерений n.

Важным понятием является надежность результата измерений (α), т.е. вероятность того, что искомое значение измеряемой величины попадет в данный доверительный интервал.

Например, при обработке деталей на станках в устойчивом технологическом режиме распределение погрешностей подчиняется нормальному закону. Предположим, что установлен допуск на длину детали, равный 2а. В этом случае доверительным интервалом, в котором находится искомое значение длины детали а, будет (а - а, а + а).

Если 2a = ±3s, то надежность результата a = 0,68, т. е. в 32 случаях из 100 следует ожидать выхода размера детали за допуск 2а. При оценивании качества детали по допуску 2a = ±3s надежность результата составит 0,997. В этом случае можно ожидать выхода за установленный допуск только трех деталей из 1000. Однако увеличение надежности возможно лишь при уменьшении погрешности длины детали. Так, для повышения надежности с a = 0,68 до a = 0,997 погрешность длины детали необходимо уменьшить в три раза.

В последнее время получил широкое распространение термин «достоверность измерений». В некоторых случаях он необоснованно применяется вместо термина «точность измерений». Например, в некоторых источниках можно встретить выражение «установление единства и достоверности измерений в стране». Тогда как правильнее сказать «установление единства и требуемой точности измерений». Достоверность нами рассматривается как качественная характеристика, отражающая близость к нулю случайных погрешностей. Количественно она может быть определена через недостоверность измерений.

Недостоверность измерений (кратко — недостоверность)— оценка несовпадения результатов в серии измерений вследствие влияния суммарного воздействия случайных погрешностей (определяемых статистическими и нестатистическими методами), характеризуемая областью значений, в которой находится истинное значение измеряемой величины.

В соответствии с рекомендациями Международного бюро мер и весов недостоверность выражается в виде суммарной средней квадратической погрешности измерений — Su включающей среднюю квадратическую погрешность S (определяемую статистическими методами) и среднюю квадратическую погрешность u (определяемую нестатистическими методами), т.е.

(1.20)

Предельная погрешность измерения (кратко — предельная погрешность) — максимальная погрешность измерения (плюс, минус), вероятность которой не превышает значение Р, при этом разность 1 - Р незначительная.

Например, при нормальном законе распределения вероятность появления случайной погрешности, равной ±3s, составляет 0,997, а разность 1-Р = 0,003 незначительна. Поэтому во многих случаях доверительную погрешность ±3s, принимают за предельную, т.е. пр = ±3s. В случае необходимости пр может иметь и другие соотношения с s при достаточно большом Р (2s, 2,5s, 4s и т.д.).

В связи с тем, в стандартах ГСИ вместо термина «средняя квадратическая погрешность» применен термин «среднее квадратическое откланение», в дальнейших рассуждениях мы будим придерживаться именно этого термина.

Абсолютная погрешность измерения (кратко — абсолютная погрешность) — погрешность измерения, выраженная в единицах измеряемой величины. Так, погрешность Х измерения длины детали Х, выраженная в микрометрах, представляет собой абсолютную погрешность.

Не следует путать термины «абсолютная погрешность» и «абсолютное значение погрешности», под которым понимают значение погрешности без учета знака. Так, если абсолютная погрешность измерения равна ±2мкВ, то абсолютное значение погрешности будет 0,2 мкВ.

Относительная погрешность измерения (кратко — относительная погрешность) — погрешность измерения, выраженная в долях значения измеряемой величины или в процентах. Относительную погрешность δ находят из отношений:

(1.21)

Например, имеется действительное значение длины детали х = 10,00 мм и абсолютное значение погрешности х = 0,01мм. Относительная погрешность составит

Статическая погрешность — погрешность результата измерения, обусловленная условиями статического измерения.

Динамическая погрешность — погрешность результата измерения, обусловленная условиями динамического измерения.

Погрешность воспроизведения единицы — погрешность результата измерений, выполняемых при воспроизведении единицы физической величины. Так, погрешность воспроизведения единицы при помощи государственного эталона указывают в виде ее составляющих: неисключенной систематической погрешности, характеризуемой ее границей; случайной погрешностью, характеризуемой средним квадратическим отклонением s и нестабильностью за год ν.

Погрешность передачи размера единицы — погрешность результата измерений, выполняемых при передаче размера единицы. В погрешность передачи размера единицы входят неисключенные систематические погрешности и случайные погрешности метода и средств передачи размера единицы (например, компаратора).


Пусть некоторая случайная величина a измеряется n раз в одинаковых условиях. Результаты измерений дали набор n различных чисел

Абсолютная погрешность - величина размерная. Среди n значений абсолютных погрешностей обязательно встречаются как положительные, так и отрицательные.

За наиболее вероятное значение величины а обычно принимают среднее арифметическое значение результатов измерений

.

Чем больше число измерений, тем ближе среднее значение к истинному.

Абсолютной погрешностью i

.

Относительной погрешностью i -го измерения называется величина

Относительная погрешность - величина безразмерная. Обычноотносительная погрешность выражается в процентах, для этого e i домножают на 100%. Величина относительной погрешности характеризует точность измерения.

Средняя абсолютная погрешность определяется так:

.

Подчеркнем необходимость суммирования абсолютных значений (модулей) величин Dа i . В противном случае получится тождественный нулевой результат.

Средней относительной погрешностью называется величина

.

При большом числе измерений .

Относительную погрешность можно рассматривать как значение погрешности, приходящееся на единицу измеряемой величины.

О точности измерений судят на основании сравнения погрешностей результатов измерений. Поэтому погрешности измерений выражают в такой форме, чтобы для оценки точности достаточно было сопоставить только одни погрешности результатов, не сравнивая при этом размеры измеряемых объектов или зная эти размеры весьма приближенно. Из практики известно, что абсолютная погрешность измерения угла не зависит от значения угла, а абсолютная погрешность измерения длины зависит от значения длины. Чем больше значение длины, тем при данном методе и условиях измерения абсолютная погрешность будет больше. Следовательно, по абсолютной погрешности результата о точности измерения угла судить можно, а о точности измерения длины нельзя. Выражение погрешности в относительной форме позволяет сравнивать в известных случаях точность угловых и линейных измерений.


Основные понятия теории вероятности. Случайная погрешность.

Случайной погрешностью называют составляющую погрешности измерений, изменяющуюся случайным образом при повторных измерениях одной и той же величины.

При проведении с одинаковой тщательностью и в одинаковых условиях повторных измерений одной и той же постоянной неизменяющейся величины мы получаем результаты измерений – некоторые из них отличаются друг от друга, а некоторые совпадают. Такие расхождения в результатах измерений говорят о наличии в них случайных составляющих погрешности.

Случайная погрешность возникает при одновременном воздействии многих источников, каждый из которых сам по себе оказывает незаметное влияние на результат измерения, но суммарное воздействие всех источников может оказаться достаточно сильным.

Случайные ошибки являются неизбежным следствием любых измерений и обусловлены:

а) неточностью отсчетов по шкале приборов и инструментов;

б) не идентичностью условий повторных измерений;

в) беспорядочными изменениями внешних условий (температуры, давления, силового поля и т.д.), которые невозможно контролировать;

г) всеми другими воздействиями на измерения, причины которых нам неизвестны. Величину случайной погрешности можно свести к минимуму путем многократного повторения эксперимента и соответствующей математической обработки полученных результатов.

Случайная ошибка может принимать различные по абсолютной величине значения, предсказать которые для данного акта измерения невозможно. Эта ошибка в равной степени может быть как положительной, так и отрицательной. Случайные ошибки всегда присутствуют в эксперименте. При отсутствии систематических ошибок они служат причиной разброса повторных измерений относительно истинного значения.

Допустим, что при помощи секундомера измеряют период колебаний маятника, причем измерение многократно повторяют. Погрешности пуска и остановки секундомера, ошибка в величине отсчета, небольшая неравномерность движения маятника – все это вызывает разброс результатов повторных измерений и поэтому может быть отнесено к категории случайных ошибок.

Если других ошибок нет, то одни результаты окажутся несколько завышенными, а другие несколько заниженными. Но если, помимо этого, часы еще и отстают, то все результаты будут занижены. Это уже систематическая ошибка.

Некоторые факторы могут вызвать одновременно и систематические и случайные ошибки. Так, включая и выключая секундомер, мы можем создать небольшой нерегулярный разброс моментов пуска и остановки часов относительно движения маятника и внести тем самым случайную ошибку. Но если к тому же мы каждый раз торопимся включить секундомер и несколько запаздываем выключить его, то это приведет к систематической ошибке.

Случайные погрешности вызываются ошибкой параллакса при отсчете делений шкалы прибора, сотрясении фундамента здания, влиянием незначительного движения воздуха и т.п.

Хотя исключить случайные погрешности отдельных измерений невозможно, математическая теория случайных явлений позволяем уменьшить влияние этих погрешностей на окончательный результат измерений. Ниже будет показано, что для этого необходимо произвести не одно, а несколько измерений, причем, чем меньшее значение погрешности мы хотим получить, тем больше измерений нужно провести.

В связи с тем, что возникновение случайных погрешностей неизбежно и неустранимо, основной задачей всякого процесса измерения является доведение погрешностей до минимума.

В основе теории погрешностей лежат два основных предположения, подтверждаемых опытом:

1. При большом числе измерений случайные погрешности одинаковой величины, но разного знака, т.е погрешности в сторону увеличения и уменьшения результата встречаются достаточно часто.

2. Большие по абсолютной величине погрешности встречаются реже, чем малые, таким образом, вероятность возникновения погрешности уменьшается с ростом ее величины.

Поведение случайных величин описывают статистические закономерности, которые являются предметом теории вероятностей. Статистическим определением вероятности w i события i является отношение

где n - общее число опытов, n i - число опытов, в которых событие i произошло. При этом общее число опытов должно быть очень велико (n ®¥). При большом числе измерений случайные ошибки подчиняются нормальному распределению (распределение Гаусса), основными признаками которого являются следующие:

1. Чем больше отклонение значения измеренной величины от истинного, тем меньше вероятность такого результата.

2. Отклонения в обе стороны от истинного значения равновероятны.

Из приведенных выше допущений вытекает, что для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. Пусть произведено n измерений: x 1 , x 2 , ... x n - одним и тем же методом и с одинаковой тщательностью. Можно ожидать, что число dn полученных результатов, которые лежат в некотором достаточно узком интервале от x до x + dx , должно быть пропорционально:

Величине взятого интервала dx ;

Общему числу измерений n .

Вероятность dw (x ) того, что некоторое значение x лежит в интервале от x до x + dx, определяется следующим образом:

(при числе измерений n ®¥).

Функция f (х ) называется функцией распределения или плотностью вероятности.

В качестве постулата теории ошибок принимается, что результаты прямых измерений и их случайные погрешности при большом их количестве подчиняются закону нормального распределения.

Найденная Гауссом функция распределения непрерывной случайной величины x имеет следующий вид:

, где mиs - параметры распределения.

Параметрmнормального распределения равен среднему значению áx ñ случайной величины, которое при произвольной известной функции распределения определяется интегралом

.

Таким образом, величина m является наиболее вероятным значением измеряемой величины x, т.е. ее наилучшей оценкой.

Параметр s 2 нормального распределения равен дисперсии D случайной величины, которая в общем случае определяется следующим интегралом

.

Квадратный корень из дисперсии называется средним квадратическим отклонением случайной величины .

Среднее отклонение (погрешность) случайной величины ásñ определяется с помощью функции распределения следующим образом

Средняя погрешность измерений ásñ, вычисленная по функции распределения Гаусса, соотносится с величиной среднего квадратического отклонения s следующим образом:

< s> = 0,8s .

Параметры s и m связаны между собой следующим образом:

.

Это выражение позволяет находить среднее квадратическое отклонение s , если имеется кривая нормального распределения.

График функции Гаусса представлен на рисунках. Функция f (x ) симметрична относительно ординаты, проведенной в точке x = m; проходит через максимум в точке x = m и имеет перегиб в точках m ±s. Таким образом, дисперсия характеризует ширину функции распределения, или показывает, насколько широко разбросаны значения случайной величины относительно ее истинного значения. Чем точнее измерения, тем ближе к истинному значению результаты отдельных измерений, т.е. величина s - меньше. На рисунке A изображена функция f (x ) для трех значений s.

Площадь фигуры, ограниченной кривой f (x ) и вертикальными прямыми, проведенными из точек x 1 и x 2 (рис.Б), численно равна вероятности попадания результата измерения в интервал Dx = x 1 - x 2 , которая называется доверительной вероятностью. Площадь под всей кривой f (x ) равна вероятности попадания случайной величины в интервал от 0 до ¥, т.е.

,

так как вероятность достоверного события равна единице.

Используя нормальное распределение, теория ошибок ставит и решает две основные задачи. Первая - оценка точности проведенных измерений. Вторая - оценка точности среднего арифметического значения результатов измерений.5. Доверительный интервал. Коэффициент Стъюдента.

Теория вероятностей позволяет определить величину интервала, в котором с известной вероятностью w находятся результаты отдельных измерений. Эта вероятность называется доверительной вероятностью , а соответствующий интервал (<x > ± Dx ) w называется доверительным интервалом. Доверительная вероятность также равна относительной доле результатов, оказавшихся внутри доверительного интервала.

Если число измерений n достаточно велико, то доверительная вероятность выражает долю из общего числа n тех измерений, в которых измеренная величина оказалась в пределах доверительного интервала. Каждой доверительной вероятности w соответствует свой доверительный интервал.w 2 80%. Чем шире доверительный интервал, тем больше вероятность получить результат внутри этого интервала. В теории вероятностей устанавливается количественная связь между величиной доверительного интервала, доверительной вероятностью и числом измерений.

Если в качестве доверительного интервала выбрать интервал, соответствующий средней погрешности, то есть Da = áDа ñ, то при достаточно большом числе измеренийон соответствует доверительной вероятности w 60%. При уменьшении числа измерений доверительная вероятность, соответствующая такому доверительному интервалу (áа ñ ± áDа ñ), уменьшается.

Таким образом, для оценки доверительного интервала случайной величины можно пользоваться величиной средней погрешностиáDа ñ.

Для характеристики величины случайной погрешности необходимо задать два числа, а именно, величину доверительного интервала и величину доверительной вероятности. Указание одной только величины погрешности без соответствующей ей доверительной вероятности в значительной мере лишено смысла.

Если известна средняя погрешность измерения ásñ, доверительный интервал, записанный в виде (<x > ± ásñ) w , определен с доверительной вероятностью w = 0,57.

Если известно среднее квадратическое отклонение s распределения результатов измерений, указанный интервал имеет вид (<x t w s) w , где t w - коэффициент, зависящий от величины доверительной вероятности и рассчитывающийся по распределению Гаусса.

Наиболее часто используемые величиныDx приведены в таблице 1.

В основе точных естественных наук лежат измерения. При измерениях значения величин выражаются в виде чисел, которые указывают во сколько раз измеренная величина больше или меньше другой величины, значение которой принято за единицу. Полученные в результате измерений числовые значения различных величин могут зависеть друг от друга. Связь между такими величинами выражается в виде формул, которые показывают, как числовые значения одних величин могут быть найдены по числовым значениям других.

При измерениях неизбежно возникают погрешности. Необходимо владеть методами, применяемыми при обработке результатов, полученных при измерениях. Это позволит научиться получать из совокупности измерений наиболее близкие к истине результаты, вовремя заметить несоответствия и ошибки, разумно организовать сами измерения и правильно оценить точность полученных значений.

Если измерение заключается в сравнении данной величины с другой, однородной величиной, принятой за единицу, то измерение в этом случае называется прямым.

Прямые (непосредственные) измерения – это такие измерения, при которых мы получаем численное значение измеряемой величины либо прямым сравнением ее с мерой (эталоном), либо с помощью приборов, градуированных в единицах измеряемой величины.

Однако далеко не всегда такое сравнение производится непосредственно. В большинстве случаев измеряется не сама интересующая нас величина, а другие величины, связанные с нею теми или иными соотношениями и закономерностями. В этом случае для измерения необходимой величины приходится предварительно измерить несколько других величин, по значению которых вычислением определяется значение искомой величины. Такое измерение называется косвенным.

Косвенные измерения состоят из непосредственных измерений одной или нескольких величин, связанных с определяемой величиной количественной зависимостью, и вычисления по этим данным определяемой величины.

В измерениях всегда участвуют измерительные приборы, которые одной величине ставят в соответствие связанную с ней другую, доступную количественной оценке с помощью наших органов чувств. Например, силе тока ставится в соответствие угол отклонения стрелки на шкале с делениями. При этом должны выполняться два основных условия процесса измерения: однозначность и воспроизводимость результата. эти два условия всегда выполняются только приблизительно. Поэтому процесс измерения содержит наряду с нахождением искомой величины и оценку неточности измерения .

Современный инженер должен уметь оценить погрешность результатов измерений с учетом требуемой надежности. Поэтому большое внимание уделяется обработке результатов измерений. Знакомство с основными методами расчета погрешностей – одна из главных задач лабораторного практикума.

Почему возникают погрешности?

Существует много причин для возникновения погрешностей измерений. Перечислим некоторые из них.

· процессы, происходящие при взаимодействии прибора с объектом измерений, неизбежно изменяют измеряемую величину. Например, измерение размеров детали с помощью штангенциркуля, приводит к сжатию детали, то есть к изменению ее размеров. Иногда влияние прибора на измеряемую величину можно сделать относительно малым, иногда же оно сравнимо или даже превышает саму измеряемую величину.

· Любой прибор имеет ограниченные возможности однозначного определения измеряемой величины вследствие конструктивной неидеальности. Например, трение между различными деталями в стрелочном блоке амперметра приводит к тому, что изменение тока на некоторую малую, но конечную, величину не вызовет изменения угла отклонения стрелки.

· Во всех процессах взаимодействия прибора с объектом измерения всегда участвует внешняя среда, параметры которой могут изменяться и, зачастую, непредсказуемым образом. Это ограничивает возможность воспроизводимости условий измерения, а, следовательно, и результата измерения.

· При визуальном снятии показаний прибора возможна неоднозначность в считывании показаний прибора вследствие ограниченных возможностей нашего глазомера.

· Большинство величин определяется косвенным образом на основании наших знаний о связи искомой величины с другими величинами, непосредственно измеряемыми приборами. Очевидно, что погрешность косвенного измерения зависит от погрешностей всех прямых измерений. Кроме того, в ошибки косвенного измерения свой вклад вносят и ограниченность наших познаний об измеряемом объекте, и упрощенность математического описания связей между величинами, и игнорирование влияния тех величин, воздействие которых в процессе измерения считается несущественным.

Классификация погрешностей

Значение погрешности измерения некоторой величины принято характеризовать:

1. Абсолютной погрешностью – разностью между найденным на опыте (измеренным) и истинным значением некоторой величины

. (1)

Абсолютная погрешность показывает, на сколько мы ошибаемся при измерении некоторой величины Х.

2. Относительной погрешностью равной отношению абсолютной погрешности к истинному значению измеряемой величины Х

Относительная погрешность показывает, на какую долю от истинного значения величины Х мы ошибаемся.

Качество результатов измерений какой-то величины характеризуется относительной погрешностью . Величина может быть выражена в процентах.

Из формул (1) и (2) следует, что для нахождения абсолютной и относительной погрешностей измерений, нужно знать не только измеренное, но и истинное значение интересующей нас величины. Но если истинное значение известно, то незачем производить измерения. Цель измерений всегда состоит в том, чтобы узнать не известное заранее значение некоторой величины и найти если не ее истинное значение, то хотя бы значение, достаточно мало от него отличающееся. Поэтому формулы (1) и (2), определяющие величину погрешностей на практике не пригодны. При практических измерениях погрешности не вычисляются, а оцениваются. При оценках учитываются условия проведения эксперимента, точность методики, качество приборов и ряд других факторов. Наша задача: научиться строить методику эксперимента и правильно использовать полученные на опыте данные для того, чтобы находить достаточно близкие к истинным значения измеряемых величин, разумно оценивать погрешности измерений.

Говоря о погрешностях измерений, следует, прежде всего, упомянуть о грубых погрешностях (промахах) , возникающих вследствие недосмотра экспериментатора или неисправности аппаратуры. Грубых ошибок следует избегать. Если установлено, что они произошли, соответствующие измерения нужно отбрасывать.

Не связанные с грубыми ошибками погрешности опыта делятся на случайные и систематические.

с лучайные погрешности. Многократно повторяя одни и те же измерения, можно заметить, что довольно часто их результаты не в точности равны друг другу, а «пляшут» вокруг некоторого среднего (рис.1). Погрешности, меняющие величину и знак от опыта к опыту, называют случайными. Случайные погрешности непроизвольно вносятся экспериментатором вследствие несовершенства органов чувств, случайных внешних факторов и т. д. Если погрешность каждого отдельного измерения принципиально непредсказуема, то они случайным образом изменяют значение измеряемой величины. Эти погрешности можно оценить только при помощи статистической обработки многократных измерений искомой величины.

Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, неравномерно растягивающаяся пружина, неравномерный шаг микрометрического винта, не равные плечи весов и т. д.) и с самой постановкой опыта. Они сохраняют свою величину (и знак!) во время эксперимента. В результате систематических погрешностей разбросанные из-за случайных погрешностей результаты опыта колеблются не вокруг истинного, а вокруг некоторого смещенного значения (рис.2). погрешность каждого измерения искомой величины можно предсказать заранее, зная характеристики прибора.



Расчет погрешностей прямых измерений

Систематические погрешности . Систематические ошибки закономерным образом изменяют значения измеряемой величины. Наиболее просто поддаются оценке погрешности, вносимые в измерения приборами, если они связаны с конструктивными особенностями самих приборов. Эти погрешности указываются в паспортах к приборам. Погрешности некоторых приборов можно оценить и не обращаясь к паспорту. Для многих электроизмерительных приборов непосредственно на шкале указан их класс точности.

Класс точности прибора – это отношение абсолютной погрешности прибора к максимальному значению измеряемой величины , которое можно определить с помощью данного прибора (это систематическая относительная погрешность данного прибора, выраженная в процентах от номинала шкалы ).

.

Тогда абсолютная погрешность такого прибора определяется соотношением:

.

Для электроизмерительных приборов введено 8 классов точности: 0,05; 0,1; 0,5; 1,0; 1,5; 2,0; 2,5; 4.

Чем ближе измеряемая величина к номиналу, тем более точным будет результат измерения. Максимальная точность (т. е. наименьшая относительная ошибка), которую может обеспечить данный прибор, равна классу точности. Это обстоятельство необходимо учитывать при использовании многошкальных приборов. Шкалу надо выбирать с таким расчетом, чтобы измеряемая величина, оставаясь в пределах шкалы, была как можно ближе к номиналу.

Если класс точности для прибора не указан, то необходимо руководствоваться следующими правилами:

· Абсолютная погрешность приборов с нониусом равна точности нониуса.

· Абсолютная погрешность приборов с фиксированным шагом стрелки равна цене деления.

· Абсолютная погрешность цифровых приборов равна единице минимального разряда.

· Для всех остальных приборов абсолютная погрешность принимается равной половине цены деления.

Случайные погрешности . Эти погрешности имеют статистический характер и описываются теорией вероятности. Установлено, что при очень большом количестве измерений вероятность получить тот или иной результат в каждом отдельном измерении можно определить при помощи нормального распределения Гаусса. При малом числе измерений математическое описание вероятности получения того или иного результата измерения называется распределением Стьюдента (более подробно об этом можно прочитать в пособии «Ошибки измерений физических величин»).

Как же оценить истинное значение измеряемой величины?

Пусть при измерении некоторой величины мы получили N результатов: . Среднее арифметическое серии измерений ближе к истинному значению измеряемой величины, чем большинство отдельных измерений. Для получения результата измерения некоторой величины используется следующий алгоритм.

1). Вычисляется среднее арифметическое серии из N прямых измерений:

2). Вычисляется абсолютная случайная погрешность каждого измерения – это разность между средним арифметическим серии из N прямых измерений и данным измерением:

.

3). Вычисляется средняя квадратичная абсолютная погрешность :

.

4). Вычисляется абсолютная случайная погрешность . При небольшом числе измерений абсолютную случайную погрешность можно рассчитать через среднюю квадратичную погрешность и некоторый коэффициент , называемый коэффициентом Стъюдента:

,

Коэффициент Стьюдента зависит от числа измерений N и коэффициента надежности (в таблице 1 отражена зависимость коэффициента Стьюдента от числа измерений при фиксированном значении коэффициента надежности ).

Коэффициент надежности – это вероятность, с которой истинное значение измеряемой величины попадает в доверительный интервал.

Доверительный интервал – это числовой интервал, в который с определенной вероятностью попадает истинное значение измеряемой величины.

Таким образом, коэффициент Стъюдента – это число, на которое нужно умножить среднюю квадратичную погрешность, чтобы при данном числе измерений обеспечить заданную надежность результата.

Чем большую надежность необходимо обеспечить для данного числа измерений, тем больше коэффициент Стъюдента. С другой стороны, чем больше число измерений, тем меньше коэффициент Стъюдента при данной надежности. В лабораторных работах нашего практикума будем считать надежность заданной и равной 0,9. Числовые значения коэффициентов Стъюдента при этой надежности для разного числа измерений приведены в таблице 1.

Таблица 1

Число измерений N

Коэффициент Стъюдента

5). Вычисляется полная абсолютная погрешность. При любых измерениях существуют и случайные и систематические погрешности. Расчет общей (полной) абсолютной погрешности измерения дело непростое, так как эти погрешности разной природы.

Для инженерных измерений имеет смысл суммировать систематическую и случайную абсолютные погрешности

.

Для простоты расчетов принято оценивать полную абсолютную погрешность как сумму абсолютной случайной и абсолютной систематической (приборной) погрешностей, если погрешности одного порядка величины, и пренебрегать одной из погрешностей, если она более чем на порядок (в 10 раз) меньше другой.

6). Округляется погрешность и результат . Поскольку результат измерений представляется в виде интервала значений, величину которого определяет полная абсолютная погрешность, важное значение имеет правильное округление результата и погрешности.

Округление начинают с абсолютной погрешности!!! Число значащих цифр, которое оставляют в значении погрешности, вообще говоря, зависит от коэффициента надежности и числа измерений. Однако даже для очень точных измерений (например, астрономических), в которых точное значение погрешности важно, не оставляют более двух значащих цифр. Бóльшее число цифр не имеет смысла, так как определение погрешности само имеет свою погрешность. В нашем практикуме сравнительно небольшой коэффициент надежности и малое число измерений. Поэтому при округлении (с избытком) полной абсолютной погрешности оставляют одну значащую цифру.

Разряд значащей цифры абсолоютной погрешности определяет разряд первой сомнительной цифры в значении результата. Следовательно, само значение результата нужно округлять (с поправкой) до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности . Сформулированное правило следует применять и в тех случаях, когда некоторые из цифр являются нулями.

Если при измерении массы тела получен результат , то писать нули в конце числа 0,900 необходимо. Запись означала бы, что о следующих значащих цифрах ничего не известно, в то время как измерения показали, что они равны нулю.

7). Вычисляется относительная погрешность .

При округлении относительной погрешности достаточно оставить две значащие цифры.

р езультат серии измерений некоторой физической величины представляют в виде интервала значений с указанием вероятности попадания истинного значения в данный интервал, то есть результат необходимо записать в виде:

Здесь – полная, округленная до первой значащей цифры, абсолютная погрешность и – округленное с учетом уже округленной погрешности среднее значение измеряемой величины. При записи результата измерений обязательно нужно указать единицу измерения величины.

Рассмотрим несколько примеров:

1. Пусть при измерении длины отрезка мы получили следующий результат: см и см. Как грамотно записать результат измерений длины отрезка? Сначала округляем с избытком абсолютную погрешность, оставляя одну значащую цифру см. Значащая цифра погрешности в разряде сотых. Затем округляем с поправкой среднее значение с точностью до сотых, т. е. до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности см. Вычисляем относительную погрешность

.

см; ; .

2. Пусть при расчете сопротивления проводника мы получили следующий результат: и . Сначала округляем абсолютную погрешность, оставляя одну значащую цифру . Затем округляем среднее значение с точностью до целых . Вычисляем относительную погрешность

.

Результат измерений записываем так:

; ; .

3. Пусть при расчете массы груза мы получили следующий результат: кг и кг. Сначала округляем абсолютную погрешность, оставляя одну значащую цифру кг. Затем округляем среднее значение с точностью до десятков кг. Вычисляем относительную погрешность

.

.

Вопросы и задачи по теории погрешностей

1. Что значит измерить физическую величину? Приведите примеры.

2. Почему возникают погрешности измерений?

3. Что такое абсолютная погрешность?

4. Что такое относительная погрешность?

5. Какая погрешность характеризует качество измерения? Приведите примеры.

6. Что такое доверительный интервал?

7. Дайте определение понятию «систематическая погрешность».

8. Каковы причины возникновения систематических погрешностей?

9. Что такое класс точности измерительного прибора?

10. Как определяются абсолютные погрешности различных физических приборов?

11. Какие погрешности называются случайными и как они возникают?

12. Опишите процедуру вычисления средней квадратичной погрешности.

13. Опишите процедуру расчета абсолютной случайной погрешности прямых измерений.

14. Что такое «коэффициент надежности»?

15. От каких параметров и как зависит коэффициент Стьюдента?

16. Как рассчитывается полная абсолютная погрешность прямых измерений?

17. Напишите формулы для определения относительной и абсолютной погрешностей косвенных измерений.

18. Сформулируйте правила округления результата с погрешностью.

19. Найдите относительную погрешность измерения длины стены при помощи рулетки с ценой деления 0,5см. Измеренная величина составила 4,66м.

20. При измерении длины сторон А и В прямоугольника были допущены абсолютные погрешности ΔА и ΔВ соответственно. Напишите формулу для расчета абсолютной погрешности ΔS, полученной при определении площади по результатам этих измерений.

21. Измерение длины ребра куба L имело погрешность ΔL. Напишите формулу для определения относительной погрешности объема куба по результатам этих измерений.

22. Тело двигалось равноускоренно из состояния покоя. Для расчета ускорения измерили путь S, пройденный телом, и время его движения t. Абсолютные погрешности этих прямых измерений составили соответственно ΔS и Δt. Выведите формулу для расчета относительной погрешности ускорения по этим данным.

23. При расчете мощности нагревательного прибора по данным измерений получены значения Рср = 2361,7893735 Вт и ΔР = 35,4822 Вт. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

24. При расчете величины сопротивления по данным измерений получены следующие значения: Rср = 123,7893735 Ом, ΔR = 0,348 Ом. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

25. При расчете величины коэффициента трения по данным измерений получены значения μср = 0,7823735 и Δμ = 0,03348. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

26. Ток силой 16,6 А определялся по прибору с классом точности 1,5 и номиналом шкалы 50 А. Найдите абсолютную приборную и относительную погрешности этого измерения.

27. В серии из 5 измерений периода колебаний маятника получились следующие значения: 2,12 с, 2,10 с, 2,11 с, 2,14 с, 2,13 с. Найдите абсолютную случайную погрешность определения периода по этим данным.

28. Опыт падения груза с некоторой высоты повторяли 6 раз. При этом получались следующие величины времени падения груза: 38,0 с, 37,6 с, 37,9 с, 37,4 с, 37,5 с, 37,7 с. Найдите относительную погрешность определения времени падения.

Цена деления – это измеряемая величина, вызывающая отклонение указателя на одно деление. Цена деления определяется как отношение верхнего предела измерения прибора к числу делений шкалы.