Сложный процент и формулы расчета сложного процента. Сложные проценты

Сложным процентом принято называть эффект, возникающий при накоплении прибыли и процентов, в результате чего выплаты по процентам возрастают по экспоненциальному графику. Большинство современных банков принимают клиентов именно под сложные проценты, что, несомненно, выгодно для вкладчика. Важность открытия сложных процентов оценил даже сам Эйнштейн, назвав их главной «движущей силой в мире».

Для того чтобы лучше разобраться, что представляют собой сложные проценты, необходимо перейти к примерам с расчетами.

Как рассчитывается сложный процент?

Для расчета применяется простая формула:

В формуле под SUM понимается окончательная сумма расчета с клиентом, под Х –сумма вложения, под n – количество расчетных периодов. На графике можно увидеть, что подразумевается под экспоненциальным возрастанием суммы:

Для банковских вкладов формула немного сложнее, так как вводится новый элемент уравнения – :

Так, нам нужно знать частоту капитализации. Под капитализацией понимается перерасчет суммы, на которую начисляются проценты – к базовой сумме добавляется , начисленная за последний период. Если перерасчет происходит ежемесячно, частота капитализации (в нашей формуле это D) составляет 30 дней, если раз в квартал – 90 дней.

Остальные незнакомые показатели в формуле расчета банковского сложного процента – это Y – количество дней в году (365 или 366) и P – процентная ставка. Весь блок значений после единицы под скобкой называется коэффициентом процентной ставки .

Рассмотрим пример:

Гражданин И вкладывает 100000 рублей под 15% годовых с ежемесячной капитализацией. Какую сумму он сможет получить через 8 лет:

А) с простого процента?

Б) со сложного процента?

Так, рассчитываем сначала простой процент. 15% от 100000 рублей составляет 15000 рублей. Если 15 тыс. рублей умножить на 8, то получится прибыль с вклада в 120 тыс. рублей. Таким образом, через 8 лет гражданин И сможет снять 220 тыс. рублей.

Для расчета сложного процента подставляем данные в формулу:

Результат расчетов должен неприятно удивить – прибыль составит те же 120 тыс. рублей. Тогда попробуем рассчитать сумму при ежегодной капитализации, а не при ежемесячной:

Мы получим результат, который удовлетворит нас гораздо больше – 306 тыс. прибыли. Делаем вывод: чем реже происходит капитализация, тем выше будет прибыль. Проценты начисляются ежегодно таким образом:

Простой (прибыль + сумма)

Сложный (прибыль + сумма)

Видно, что под сложным процентом растут словно снежный ком. Чем дольше вкладчик не будет их снимать, тем больше будет его прибыль от месяца к месяцу.

Другие полезные формулы

Для расчетов по вкладам могут пригодиться и другие формулы:

  1. Процентная ставка . Формула показывает, под какой процент нужно внести средства, чтобы получить желаемый результат.

Все показатели нам известны, поэтому попробуем сразу решить пример:

Под какой процент нужно положить 10000 рублей, чтобы через 15 лет получить 80000 рублей?

Понятно, что нужно положить деньги под 15% годовых.

  1. Количество периодов . Формула показывает, на какое количество процентных периодов нужно внести средства, чтобы достичь желаемого результата:

Опять-такие пробуем решить пример:

На сколько времени нужно внести деньги под 20% годовых в размере 150000 тыс. рублей, чтобы получить 1 млн. рублей?

Нужно внести средства на 10 лет.

Сложный процент отличается от обычного тем, что он начисляется не только на основную сумму вклада, но и на сумму накопленных на нем процентов. По этой причине суммы на накопительных счетах со сложной ставкой процента растут быстрее, чем на счетах с простой процентной ставкой. Более того, накопления будут расти еще быстрее, если капитализация процентов осуществляется много раз в году. Сложные проценты встречаются в различных типах инвестиций, а также в отдельных видах займов, например, по кредитным картам. Рассчитать увеличение исходной суммы по ставке сложного процента достаточно просто, если знать правильную формулу.

Шаги

Часть 1

Расчет годовых сложных процентов вручную
  1. Определите годовую капитализацию. Процентная ставка по инвестициям или кредитным соглашениям устанавливается на год. Например, если ставка по вашему автокредиту составляет 6%, то вы ежегодно платите 6% от суммы займа. При капитализации процентов раз в год расчитать сложный процент проще всего.

    • Проценты по долгам и инвестициям могут капитализироваться (причисляться к основной сумме) ежегодно, ежемесячно и даже ежедневно.
    • Чем чаще происходит капитализация, тем быстрее прирастает сумма процентов.
    • На ставку сложного процента можно смотреть как с точки зрения инвестора, так и сточки зрения должника. Частая капитализация говорит о том, что доходы инвестора по процентам будут расти быстрее. Для должника это означает, что ему придется платить больше процентов за пользование заемными средствами, пока займ не погашен.
    • Например, капитализация по депозитному вкладу может осуществляться раз в год, а капитализация по займу может проводиться ежемесячно или даже еженедельно.
  2. Рассчитайте капитализацию процентов для первого года. Предположим, у вас есть $1000, и вы вложили их в гособлигации США со ставкой 6% годовых. Начисление процентов по гособлигациям США производят ежегодно на основании ставки процента и текущей стоимости ценной бумаги.

    • Проценты за первый год инвестиции составят $60 ($1000*6% = $60).
    • Чтобы рассчитать проценты по второму году, сначала вам необходимо добавить к исходной сумме инвестиции ранее начисленные проценты. В приведенном примере это будет $1060 (или $1000 + $60 = $1060). То есть текущая стоимость гособлигации составляет $1060, и дальнейшие проценты рассчитываются из этой стоимости.
  3. Рассчитайте капитализацию процентов для последующих лет. Чтобы более очевидно увидеть отличие сложных процентов от обычных, рассчитайте их величину для последующих лет. От года к году суммы процентов будут увеличиваться.

    • Для второго года умножьте текущую стоимость облигации $1060 на ставку процента ($1060*6% = $63,60). Сумма процентов за год станет выше на $3,60 (или $63,60 - $60,00=$3,60). Это связано с тем, что основная сумма инвестиции выросла с $1000 до $1060.
    • На третий год текущая стоимость инвестиции составит $1123,60 ($1060 + $63,60 = $1123,60). Проценты за этот год уже будут равны $67,42. И эта сумма будет причислена к текущей стоимости ценной бумаги для расчета процентов по 4 году.
    • Чем больше срок займа/инвестиции, тем больше заметно влияние сложных процентов на общую сумму. Срок займа – это тот период, пока заемщик все еще не погасил свои долги.
    • Без капитализации проценты по второму году будут составлять $60 ($1000 * 6% = $60). В действительности, проценты за каждый год будут равны $60, если они не причисляются к основной сумме. Другими словами, это простые проценты.
  4. Создайте таблицу в Excel, чтобы полностью рассчитать сумму сложных процентов. Полезно будет визуально представить сложные проценты в виде простой таблицы в Excel, которая покажет вам рост ваших инвестиций. Откройте документ и подпишите верхние ячейки в колонках A, B, и C как "Год" "Стоимость" и "Начисленные проценты".

    • Введите в ячейки A2–A7 годы от 0 до 5.
    • Внесите исходную сумму инвестиции в ячейку B2. Допустим, если вы начали с вложения $1000. Введите здесь 1000.
    • Введите в ячейку B3 формулу "=B2*1,06" (без кавычек) и нажмите клавишу ввода. Такая формула говорит о том, что ежегодно ваши проценты капитализируются по ставке 6% (0,06). Кликните по нижнему правому углу ячейки B3 и перетащите формулу до ячейки B7. Суммы в ячейках рассчитаются автоматически.
    • Поставьте ноль в ячейке C2. В ячейку C3 введите формулу "=B3-B$2" и нажмите клавишу ввода. Так вы получите разницу между текущей и первоначальной стоимостью инвестиции (ячейками B3 и B2), которая представляет собой общую сумму начисленных процентов. Кликните по нижнему правому углу ячейки C3 и растяните формулу до ячейки C7. Суммы рассчитаются автоматически.
    • Тем же самым образом можно произвести расчеты на столько лет вперед, на сколько захотите. Также без труда можно изменить первоначальную сумму и процентную ставку, поменяв формулу расчета процентов и содержимое соответствующих ячеек.
  5. Выполните математические действия по формуле. Упростите выражение, рассчитав отдельные части, начиная со скобок и расположенной там дроби.

    • Сначала поделите дробь. Результат будет следующим: F V = $ 5000 (1 + 0 , 00288) 2 ∗ 12 {\displaystyle FV=\$5000(1+0,00288)^{2*12}} .
    • Сложите суммы в скобках. У вас получится: F V = $ 5000 (1 , 00288) 2 ∗ 12 {\displaystyle FV=\$5000(1,00288)^{2*12}} .
    • Вычислите саму степень (выражение вверху за скобками). Результат будет таким: F V = $ 5000 (1 , 00288) 24 {\displaystyle FV=\$5000(1,00288)^{24}} .
    • Возведите число в скобках в соответствующую степень. Это можно сделать на калькуляторе: сначала введите сумму в скобках (1,00288 в нашем примере), нажмите на кнопку возведения в степень x y {\displaystyle x^{y}} , а затем введите значение степени (24) и нажмите ввод. Результат будет выглядеть так: F V = $ 5000 (1 , 0715) {\displaystyle FV=\$5000(1,0715)} .
    • Наконец, умножьте первоначальную сумму на число в скобках. В приведенном примере умножьте $5000 на 1,0715, у вас получится $5357,50. Это и будет будущая стоимость вашей инвестиции через два года.
  6. Вычтите из результата первоначальную сумму. Разница будет представлять сумму накопленных процентов.

    • Вычтите первоначальные $5000 из будущей стоимости вклада $5357,50, и у вас получится $357,50 ($5375,50-$5000=$357,50).
    • То есть через два года вы заработаете $357,50 в виде процентов.

Часть 3

Расчет сложных процентов при регулярном пополнении вклада
  1. Выучите формулу. Сложные проценты будут расти еще быстрее, если вы будете регулярно увеличивать сумму вклада, например, ежемесячно вносить определенную сумму на депозитный счет. Применяемая в таком случае формула становится больше, но основана на тех же самых принципах. Она выглядит следующим образом: F V = P (1 + i c) n ∗ c + R ((1 + i c) n ∗ c − 1) i c {\displaystyle FV=P(1+{\frac {i}{c}})^{n*c}+{\frac {R((1+{\frac {i}{c}})^{n*c}-1)}{\frac {i}{c}}}} . Все переменные в формуле остаются теми же, но к ним добавляется еще один показатель:

    • "P" – первоначальная сумма;
    • "i" – годовая процентная ставка;
    • "c" – частота капитализации (сколько раз в году проценты причисляются к основной сумме);
    • "n" – продолжительность периода в годах;
    • "R" – сумма ежемесячного пополнение вклада.
  2. Определите исходные значения переменных. Чтобы рассчитать будущую стоимость вклада, вам необходимо знать первоначальную (текущую) сумму вклада, годовую процентную ставку, частоту капитализации процентов, срок вклада и величину ежемесячного пополнения вклада. Все это можно найти в соглашении, которое вы подписали со своим банком.

    • Не забудьте перевести годовой процент в десятичную дробь. Для этого просто поделите его на 100%. Например, упомянутая выше ставка 3,45% в десятичном виде будет равна 0,0345 (или 3,45%/100%=0,0345) .
    • В качестве частоты капитализации укажите, сколько раз в году проценты причисляются к общей сумме вклада. Если это происходит ежегодно, укажите единицу, ежемесячно – 12, ежедневно – 365 (не переживайте о високосных годах).
  3. Подставьте данные в формулу. В продолжение вышеуказанного примера, допустим, что вы решили ежемесячно пополнять вклад на сумму $100. При этом первоначальная сумма вклада составляет $5000, ставка равна 3,45% годовых, а капитализация происходит ежемесячно. Рассчитаем рост депозита за два года.

    • Подставьте в формулу свои данные: F V = $ 5 , 000 (1 + 0.0345 12) 2 ∗ 12 + $ 100 ((1 + 0.0345 12) 2 ∗ 12 − 1) 0.0345 12 {\displaystyle FV=\$5,000(1+{\frac {0.0345}{12}})^{2*12}+{\frac {\$100((1+{\frac {0.0345}{12}})^{2*12}-1)}{\frac {0.0345}{12}}}}
  4. Произведите расчет. Опять же, не забудьте правильный порядок операций. Это означает, что начать нужно с выполнения действий в скобках.

    • В первую очередь, вычислите дроби. То есть поделите "i" на "c" в трех местах, чтобы везде получить одинаковый результат 0,00288. Теперь формула будет выглядеть следующим образом: F V = $ 5000 (1 + 0 , 00288) 2 ∗ 12 + $ 100 ((1 + 0 , 00288) 2 ∗ 12 − 1) 0 , 00288 {\displaystyle FV=\$5000(1+0,00288)^{2*12}+{\frac {\$100((1+0,00288)^{2*12}-1)}{0,00288}}} .
    • Выполните сложение в скобках. То есть прибавьте единицу к результату предыдущих вычислений там, где требуется. У вас получится: F V = $ 5000 (1 , 00288) 2 ∗ 12 + $ 100 ((1 , 00288) 2 ∗ 12 − 1) 0 , 00288 {\displaystyle FV=\$5000(1,00288)^{2*12}+{\frac {\$100((1,00288)^{2*12}-1)}{0,00288}}} .
    • Вычислите степень. Для этого перемножьте два числа вверху за скобками. В нашем примере значение степени будет равно 24 (или 2*12). Формула предстанет в следующем виде: F V = $ 5000 (1 , 00288) 24 + $ 100 ((1 , 00288) 24 − 1) 0 , 00288 {\displaystyle FV=\$5000(1,00288)^{24}+{\frac {\$100((1,00288)^{24}-1)}{0,00288}}} .
    • Возведите необходимые числа в степень. Вам следует возвести числа в скобках в ту степень, которая у вас получилась на предыдущем этапе вычислений. Для этого на калькуляторе введите число из скобок (в примере это 1,00288), нажмите кнопку возведения в степень x y {\displaystyle x^{y}} , а затем введите значение степени (в данном случае 24). У вас получится: F V = $ 5000 (1 , 0715) + $ 100 (1 , 0715 − 1) 0 , 00288 {\displaystyle FV=\$5000(1,0715)+{\frac {\$100(1,0715-1)}{0,00288}}} .
    • Выполните вычитание. Вычтите единицу из результата предыдущего расчета в правой части формулы (в примере из 1,0715 вычитаем 1). Теперь формула выглядит так: F V = $ 5000 (1 , 0715) + $ 100 (0 , 0715) 0 , 00288 {\displaystyle FV=\$5000(1,0715)+{\frac {\$100(0,0715)}{0,00288}}} .
    • Выполните умножение. Умножьте первоначальную сумму инвестиции на число в первых скобках, а также сумму ежемесячного пополнения на такую же сумму в скобках. У вас получится: F V = $ 5357 , 50 + $ 7 , 15 0 , 00288 {\displaystyle FV=\$5357,50+{\frac {\$7,15}{0,00288}}}
    • Выполните деление. Получится такой результат: F V = $ 5 , 357.50 + $ 2 , 482.64 {\displaystyle FV=\$5,357.50+\$2,482.64}
    • Сложите цифры. Наконец, сложите две оставшиеся цифры, чтобы узнать будущую сумму на счете. Другими словами, сложите $5357,50 и $2482,64, чтобы получить $7840,14. Это и будет будущая стоимость вашей инвестиции через два года.

Сложные проценты применяются в долгосрочных финансово-кредитных операциях, если проценты не выплачиваются периодически сразу после их начисления за прошедший интервал времени, а присоединяются к сумме долга. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называют капитализацией процентов.

Формула наращения по сложным процентам

Пусть первоначальная сумма долга равна P , тогда через один год сумма долга с присоединенными процентами составит P (1+ i ) , через 2 года P (1+ i )(1+ i )= P (1+ i ) 2 , через n лет - P (1+ i ) n . Таким образом, получаем формулу наращения для сложных процентов

S=P(1+i) n , (19)

где S - наращенная сумма, i - годовая ставка сложных процентов, n - срок ссуды, (1+ i ) n - множитель наращения.

В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за одинаковые интервалы времени (год, полугодие, квартал и т.д.). Наращение по сложным процентам представляет собой рост по закону геометрической прогрессии, первый член которой равен P , а знаменатель (1+ i ).

Отметим, что при сроке n <1 наращение по простым процентам дает больший результат, чем по сложным, а при n >1 - наоборот. В этом нетрудно убедиться на конкретных числовых примерах. Наибольшее превышение суммы, наращенной по простым процентам, над суммой, наращенной по сложным процентам, (при одинаковых процентных ставках) достигается в средней части периода.

Формула наращения по сложным процентам,
когда ставка меняется во времени

В том случае, когда ставка сложных процентов меняется во времени, формула наращения имеет следующий вид

(20)

где i 1 , i 2 ,..., i k - последовательные значения ставок процентов, действующих в периоды n 1, n 2,..., nk соответственно.

Пример 6.

В договоре зафиксирована переменная ставка сложных процентов, определяемая как 20% годовых плюс маржа 10% в первые два года, 8% в третий год, 5% в четвертый год. Определить величину множителя наращения за 4 года.

Решение.

(1+0,3) 2 (1+0,28)(1+0,25)=2,704

Формула удвоения суммы

В целях оценки своих перспектив кредитор или должник может задаться вопросом: через сколько лет сумма ссуды возрастет в N раз при данной процентной ставке. Обычно это требуется при прогнозировании своих инвестиционных возможностей в будущем. Ответ получим, приравняв множитель наращения величине N :

А) для простых процентов

(1+ ni прост. ) = N , откуда

. (21)

Б) для сложных процентов

(1+ i сложн. ) n = N , откуда

. (22)

Особенно часто используется N =2. Тогда формулы (21) и (22) называются формулами удвоения и принимают следующий вид:

А) для простых процентов

, (23)

Б) для сложных процентов

. (24)

Если формулу (23) легко применять для прикидочных расчетов, то формула (24) требует применения калькулятора. Однако при небольших ставках процентов (скажем, менее 10%) вместо нее можно использовать более простую приближенную. Ее легко получить, если учесть, что ln 2  0,7, а ln (1+ i )  i . Тогда

n » 0,7/ i . (25)

Пример 7.

Решение.

а) При простых процентах:

лет.

б) При сложных процентах и точной формуле:

Года.

в) При сложных процентах и приближенной формуле:

n » 0,7/i = 0,7/0,1 =7 лет .

Выводы:

1) Одинаковое значение ставок простых и сложных процентов приводит к совершенно различным результатам.

2) При малых значениях ставки сложных процентов точная и приближенная формулы дают практически одинаковые результаты.

Начисление годовых процентов при дробном числе лет

При дробном числе лет проценты начисляются разными способами:

1) По формуле сложных процентов

S=P(1+i) n , (26)

2) На основе смешанного метода, согласно которому за целое число лет начисляются сложные проценты, а за дробное - простые

S=P(1+i) a (1+bi) , (27)

где n = a + b , a -целое число лет, b -дробная часть года.

3) В ряде коммерческих банков применяется правило, в соответствии с которым за отрезки времени меньше периода начисления проценты не начисляются, т.е.

S=P(1+i) a . (28)

Номинальная и эффективная ставки процентов

Номинальная ставка . Пусть годовая ставка сложных процентов равна j , а число периодов начисления в году m . Тогда каждый раз проценты начисляют по ставке j / m . Ставка j называется номинальной. Начисление процентов по номинальной ставке производится по формуле:

S=P(1+j/m) N , (29)

где N - число периодов начисления.

Если срок ссуды измеряется дробным числом периодов начисления, то при m разовом начислении процентов в году наращенную сумму можно рассчитывать несколькими способами, приводящими к различным результатам:

1) По формуле сложных процентов

S=P(1+j/m) N/ t , (30)

где N / t - число (возможно дробное) периодов начисления процентов, t - период начисления процентов,

2) По смешанной формуле

, (31)

где a - целое число периодов начисления (т.е. a = [ N / t ] - целая часть от деления всего срока ссуды N на период начисления t ),

b - оставшаяся дробная часть периода начисления ( b = N / t - a ).

Пример 8.

Размер ссуды 20 млн. руб. Предоставлена на 28 месяцев. Номинальная ставка равна 60% годовых. Начисление процентов ежеквартальное. Вычислить наращенную сумму в трех ситуациях: 1) когда на дробную часть начисляются сложные проценты, 2) когда на дробную часть начисляются простые проценты 3) когда дробная часть игнорируется. Результаты сравнить.

Решение.

Начисление процентов ежеквартальное. Всего имеется кварталов.

1) = 73,713 млн. руб.

2) = 73,875 млн. руб.

3) S=20(1+0,6/4) 9 = 70,358 млн . руб .

Из сопоставления наращенных сумм видим, что наибольшего значения она достигает во втором случае, т.е. при начислении на дробную часть простых процентов.

Эффективная ставка показывает, какая годовая ставка сложных процентов дает тот же финансовый результат, что и m -разовое наращение в год по ставке j / m .

Если проценты капитализируются m раз в год, каждый раз со ставкой j / m , то, по определению, можно записать равенство для соответствующих множителей наращения:

(1+i э ) n =(1+j/m) mn , (32)

где i э - эффективная ставка, а j - номинальная. Отсюда получаем, что связь между эффективной и номинальной ставками выражается соотношением

(33)

Обратная зависимость имеет вид

j=m[(1+i э ) 1/m -1]. (34)

Пример 9.

Вычислить эффективную ставку процента, если банк начисляет проценты ежеквартально, исходя из номинальной ставки 10% годовых.

Решение

i э =(1+0,1/4) 4 -1=0,1038, т.е. 10,38%.

Пример 10.

Определить какой должна быть номинальная ставка при ежеквартальном начислении процентов, чтобы обеспечить эффективную ставку 12% годовых.

Решение.

j =4[(1+0,12) 1/4 -1]=0,11495, т.е. 11,495%.

Учет (дисконтирование) по сложной ставке процентов

Здесь, также как и в случае простых процентов, будут рассмотрены два вида учета - математический и банковский.

Математический учет . В этом случае решается задача обратная наращению по сложным процентам. Запишем исходную формулу для наращения

S=P(1+i) n

и решим ее относительно P

, (35)

где

(36)

учетный или дисконтный множитель.

Если проценты начисляются m раз в году, то получим

, (37)

где

(38)

дисконтный множитель.

Величину P , полученную дисконтированием S , называют современной или текущей стоимостью или приведенной величиной S . Суммы P и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме P , выплачиваемой в настоящий момент.

Разность D = S - P называют дисконтом .

Банковский учет . В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле

P=S(1-d сл ) n , (39)

где d сл - сложная годовая учетная ставка.

Дисконт в этом случае равен

D=S-P=S-S(1-d сл ) n =S. (40)

При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.

Номинальная и эффективная учетные ставки процентов

Номинальная учетная ставка . В тех случаях, когда дисконтирование применяют m раз в году, используют номинальную учетную ставку f . Тогда в каждом периоде, равном 1/ m части года, дисконтирование осуществляется по сложной учетной ставке f / m . Процесс дисконтирования по этой сложной учетной m раз в году описывается формулой

P=S(1-f/m) N , (41)

где N - общее число периодов дисконтирования (N = mn ).

Дисконтирование не один, а m раз в году быстрее снижает величину дисконта.

Эффективная учетная ставка . Под эффективной учетной ставкой понимают сложную годовую учетную ставку, эквивалентную (по финансовым результатам) номинальной, применяемой при заданном числе дисконтирований в году m .

В соответствии с определением эффективной учетной ставки найдем ее связь с номинальной из равенства дисконтных множителей

(1-f/m) mn =(1-d сл ) n ,

из которого следует, что

d сл =1-(1-f/m) m . (42)

Отметим, что эффективная учетная ставка всегда меньше номинальной.

Наращение по сложной учетной ставке. Наращение является обратной задачей для учетных ставок. Формулы наращения по сложным учетным ставкам можно получить, разрешая соответствующие формулы для дисконтирования (39 и 41) относительно S . Получаем

из P=S(1-d сл) n

, (43)

а из P = S (1- f / m ) N

. (44)


Пример 11.

Какую сумму следует проставить в векселе, если реально выданная сумма равна 20 млн. руб., срок погашения 2 года. Вексель рассчитывается, исходя из сложной годовой учетной ставки 10%.

Решение.

млн. руб.

Пример 12.

Решить предыдущую задачу при условии, что наращение по сложной учетной ставке осуществляется не один, а 4 раза в год.

Решение.

млн. руб.

Наращение и дисконтирование

Наращенная сумма при дискретных процентах определяется по формуле

S = P (1+ j / m ) mn ,

где j - номинальная ставка процентов, а m - число периодов начисления процентов в году.

Чем больше m , тем меньше промежутки времени между моментами начисления процентов. В пределе при m ® ¥ имеем

S= lim P(1+j/m) mn =P lim [(1+j/m) m ] n . (45)

m ® ¥ m ® ¥

Известно, что

lim (1+j/m) m =lim [(1+j/m) m/j ] j =e j ,

m ® ¥ m ® ¥

где e - основание натуральных логарифмов.

Используя этот предел в выражении (45), окончательно получаем, что наращенная сумма в случае непрерывного начисления процентов по ставке j равна

S = Pe jn . (46)

Для того, чтобы отличать ставку непрерывных процентов от ставок дискретных процентов, ее называют силой роста и обозначают символом d . Тогда

S=Pe d n . (47)

Сила роста d представляет собой номинальную ставку процентов при m ® ¥ .

Дисконтирование на основе непрерывных процентных ставок осуществляется по формуле

P=Se - d n . (48)

Связь дискретных и непрерывных процентных ставок

Дискретные и непрерывные процентные ставки находятся в функциональной зависимости, благодаря которой можно осуществлять переход от расчета непрерывных процентов к дискретным и наоборот. Формулу эквивалентного перехода от одних ставок к другим можно получить путем приравнивания соответствующих множителей наращения

(1+i) n =e d n . (49)

Из записанного равенства следует, что

d = ln (1+ i ) , (50)

i = e d -1 . (51)

Пример 13.

Годовая ставка сложных процентов равна 15%, чему равна эквивалентная сила роста,

Решение.

Воспользуемся формулой (50)

d = ln (1+ i )= ln (1+0,15)=0,13976,

т.е. эквивалентная сила роста равна 13,976%.

Расчет срока ссуды и процентных ставок

В ряде практических задач начальная (P ) и конечная (S ) суммы заданы контрактом, и требуется определить либо срок платежа, либо процентную ставку, которая в данном случае может служить мерой сравнения с рыночными показателями и характеристикой доходности операции для кредитора. Указанные величины нетрудно найти из исходных формул наращения или дисконтирования. По сути дела, в обоих случаях решается в известном смысле обратная задача.

Срок ссуды

При разработке параметров соглашения и оценивании сроков достижения желательного результата требуется определить продолжительность операции (срока ссуды) через остальные параметры сделки. Рассмотрим этот вопрос подробнее.

i .

S=P(1+i) n

следует, что

(52)

где логарифм можно взять по любому основанию, поскольку он имеется как в числителе, так и в знаменателе.

m раз в году из формулы

S=P(1+j/m) mn

получаем

(53)

d . Из формулы

P=S(1-d) n

имеем (54)

m раз в году. Из

P=S(1-f/m) mn

приходим к формуле

(55)

При наращивании по постоянной силе роста. Исходя из

S = Pe d n

получаем

ln ( S / P )= d n . (56)

Расчет процентных ставок

Из тех же исходных формул, что и выше, получим выражения для процентных ставок.

А) При наращивании по сложной годовой ставке i . Из исходной формулы наращения

S=P(1+i) n

следует, что

(57)

Б) При наращивании по номинальной ставке процентов m раз в году из формулы

S=P(1+j/m) mn

получаем (58)

В) При дисконтировании по сложной годовой учетной ставке d . Из формулы

P=S(1-d) n

имеем (59)

Г) При дисконтировании по номинальной учетной ставке m раз в году. Из

P=S(1-f/m) mn

приходим к формуле

(60)

Д) При наращивании по постоянной силе роста. Исходя из

S = Pe d n

получаем

(61)

Начисление процентов и инфляция

Следствием инфляции является падение покупательной способности денег, которое за период n характеризуется индексом J n . Индекс покупательной способности равен обратной величине индекса цен J p , т.е.

J n =1/ J p . (62)

Индекс цен показывает во сколько раз выросли цены за указанный промежуток времени.

Наращение по простым процентам

Если наращенная за n лет сумма денег составляет S , а индекс цен равен J p , то реально наращенная сумма денег, с учетом их покупательной способности, равна

C=S/J p . (63)

Пусть ожидаемый средний годовой темп инфляции (характеризующий прирост цен за год) равен h . Тогда годовой индекс цен составит (1+ h ).

Если наращение производится по простой ставке в течение n лет, то реальное наращение при темпе инфляции h составит

(64)

где в общем случае

(65)

и, в частности, при неизменном темпе роста цен h ,

J p =(1+h) n . (66)

Процентная ставка, которая при начислении простых процентов компенсирует инфляцию, равна

(67)

Один из способов компенсации обесценения денег заключается в увеличении ставки процентов на величину так называемой инфляционной премии. Скорректированная таким образом ставка называется брутто-ставкой . Брутто-ставка, которую мы будем обозначать символом r , находится из равенства скорректированного на инфляцию множителя наращения по брутто-ставке множителю наращения по реальной ставке процента

(68)

откуда

(69)

Наращение по сложным процентам

Наращенная по сложным процентам сумма к концу срока ссуды с учетом падения покупательной способности денег (т.е. в неизменных рублях) составит

(70)

где индекс цен определяется выражением (65) или (66), в зависимости от непостоянства или постоянства темпа инфляции.

В этом случае падение покупательной способности денег компенсируется при ставке i = h , обеспечивающей равенство C = P .

Применяются два способа компенсации потерь от снижения покупательной способности денег при начислении сложных процентов.

А) Корректировка ставки процентов , по которой производится наращение, на величину инфляционной премии. Ставка процентов, увеличенная на величину инфляционной премии, называется брутто-ставкой. Будем обозначать ее символом r . Считая, что годовой темп инфляции равен h , можем написать равенство соответствующих множителей наращения

(71)

где i - реальная ставка.

Отсюда получаем формулу Фишера

r=i+h+ih . (72)

То есть инфляционная премия равна h + ih .

Б) Индексация первоначальной суммы P . В этом случае сумма P корректируется согласно движению заранее оговоренного индекса. Тогда

S=PJ p (1+i) n . (73)

Нетрудно заметить, что и в случае А) и в случае Б) в итоге мы приходим к одной и той же формуле наращения (73). В ней первые два сомножителя в правой части отражают индексацию первоначальной суммы, а последние два - корректировку ставки процента.

Измерение реальной ставки процента

На практике приходится решать и обратную задачу - находить реальную ставку процента в условиях инфляции. Из тех же соотношений между множителями наращения нетрудно вывести формулы, определяющие реальную ставку i по заданной (или объявленной) брутто-ставке r .

При начислении простых процентов годовая реальная ставка процентов равна

(74)

При начислении сложных процентов реальная ставка процентов определяется следующим выражением

(75)

Практические приложения теории

Рассмотрим некоторые практические приложения рассмотренной нами теории. Покажем как полученные выше формулы применяются при решении реальных задач по расчету эффективности некоторых финансовых операций, сравним различные методы расчетов.

Конвертация валюты и начисление процентов

Рассмотрим совмещение конвертации (обмена) валюты и наращение простых процентов , сравним результаты от непосредственного размещения имеющихся денежных средств в депозиты или после предварительного обмена на другую валюту. Всего возможно 4 варианта наращения процентов:

1. Без конвертации. Валютные средства размещаются в качестве валютного депозита, наращение первоначальной суммы производится по валютной ставке путем прямого применения формулы простых процентов.

2. С конвертацией. Исходные валютные средства конвертируются в рубли, наращение идет по рублевой ставке, в конце операции рублевая сумма конвертируется обратно в исходную валюту.

3. Без конвертации. Рублевая сумма размещается в виде рублевого депозита, на который начисляются проценты по рублевой ставке по формуле простых процентов.

4. С конвертацией. Рублевая сумма конвертируется в какую-либо конкретную валюту, которая инвестируется в валютный депозит. Проценты начисляются по валютной ставке. Наращенная сумма в конце операции обратно конвертируется в рубли.

Операции без конвертации не представляют сложности. В операции наращения с двойной конвертацией имеются два источника дохода: начисление процента и изменение курса. Причем начисление процента является безусловным источником (ставка фиксирована, инфляцию пока не рассматриваем). Изменение же обменного курса может быть как в ту, так и в другую сторону, и оно может быть как источником дополнительного дохода, так и приводить к потерям. Далее мы конкретно остановимся на двух вариантах (2 и 4), предусматривающих двойную конвертацию.

Предварительно введем следующие ОБОЗНАЧЕНИЯ:

P v - сумма депозита в валюте,

P r - сумма депозита в рублях,

S v - наращенная сумма в валюте,

S r - наращенная сумма в рублях,

K 0 - курс обмена в начале операции (курс валюты в руб.)

K 1 - курс обмена в конце операции,

n - срок депозита,

i - ставка наращения для рублевых сумм (в виде десятичной дроби),

j - ставка наращения для конкретной валюты.

ВАРИАНТ:ВАЛЮТА ® РУБЛИ ® РУБЛИ ® ВАЛЮТА

Операция состоит из трех этапов: обмена валюты на рубли, наращения рублевой суммы, обратное конвертирование рублевой суммы в исходную валюту. Наращенная сумма, получаемая в конце операции в валюте, составит

.

Как видим, три этапа операции нашли свое отражение в этой формуле в виде трех сомножителей.

Множитель наращения с учетом двойной конвертации равен

,

где k = K 1 / K 0 - темп роста обменного курса за срок операции.

Мы видим, что множитель наращения m связан линейной зависимостью со ставкой i и обратной с обменным курсом в конце операции K 1 (или с темпом роста обменного курса k ).

Исследуем теоретически зависимость общей доходности операции с двойной конвертацией по схеме ВАЛЮТА ® РУБЛИ ® РУБЛИ ® ВАЛЮТА от соотношения конечного и начального курсов обмена k .

Простая годовая ставка процентов, характеризующая доходность операции в целом, равна

.

Подставим в эту формулу записанное ранее выражение для S v

.

Таким образом с увеличением k доходность i эфф падает по гиперболе с асимптотой -1/ n . См. рис. 2.

Рис. 2.

Исследуем особые точки этой кривой. Отметим, что при k =1 доходность операции равна рублевой ставке, т.е. i эфф = i . При k >1 i эфф < i , а при k <1 i эфф > i . На рис. 1 видно, при некотором критическом значении k , которое мы обозначим как k * , доходность (эффективность) операции оказывается равной нулю. Из равенства i эфф =0 находим, что k * =1+ ni , что в свою очередь означает K * 1 = K 0 (1+ ni ).

ВЫВОД 1: Если ожидаемые величины k или K 1 превышают свои критические значения, то операция явно убыточна (i эфф <0 ).

Теперь определим максимально допустимое значение курса обмена в конце операции K 1 , при котором эффективность будет равна существующей ставке по депозитам в валюте, и применение двойной конвертации не дает никакой дополнительной выгоды. Для этого приравняем множители наращения для двух альтернативных операций

.

Из записанного равенства следует, что

или

.

ВЫВОД 2: Депозит валюты через конвертацию в рубли выгоднее валютного депозита, если обменный курс в конце операции ожидается меньше max K 1 .

ВАРИАНТ:РУБЛИ ® ВАЛЮТА ® ВАЛЮТА ® РУБЛИ

Рассмотрим теперь вариант с двойной конвертацией, когда имеется исходная сумма в рублях. В этом случае трем этапам операции соответствуют три сомножителя следующего выражения для наращенной суммы

.

Здесь также множитель наращения линейно зависит от ставки, но теперь от валютной ставки процентов. От конечного курса обмена он также зависит линейно.

Проведем теоретический анализ эффективности этой операции с двойной конвертацией и определим критические точки.

.

Отсюда, подставив выражение для S r , получаем

.

Зависимость показателя эффективности i эфф от k линейная, она представлена на рис. 3

Рис . 3.

При k=1 i эфф =j , при k>1 i эфф >j , при k<1 i эфф .

Найдем теперь критическое значение k * , при котором i эфф =0 . Оно оказывается равным

или .

ВЫВОД 3: Если ожидаемые величины k или K 1 меньше своих критических значений, то операция явно убыточна (i эфф <0 ).

Минимально допустимая величина k (темпа роста валютного курса за весь срок операции), обеспечивающая такую же доходность, что и прямой вклад в рублях, определяется путем приравнивания множителей наращения для альтернативных операций (или из равенства i эфф = i )

,

откуда min или min .

ВЫВОД 4: Депозит рублевых сумм через конвертацию в валюту выгоднее рублевого депозита, если обменный курс в конце операции ожидается больше min K 1 .

Теперь рассмотрим совмещение конвертации валюты и наращение сложных процентов. Ограничимся одним вариантом.

ВАРИАНТ:ВАЛЮТА ® РУБЛИ ® РУБЛИ ® ВАЛЮТА k =1 i э = i , при k >1 i э < i , а при k <1 i э > i .

Критическое значение k , при котором эффективность операции равна нулю, т.е. i э =0 ,

определяется как k * =(1+ i ) n , что означает равенство среднегодового темпа роста курса валюты годовому темпу наращения по рублевой ставке: .

ВЫВОД 5: Если ожидаемые величины k или K 1 больше своих критических значений, то рассматриваемая операция с двойной конвертацией явно убыточна (i э <0 ).

Максимально допустимое значение k , при котором доходность операции будет равна доходности при прямом инвестировании валютных средств по ставке

Контур финансовой операции

Финансовая или кредитная операции предполагают сбалансированность вложений и отдачи. Понятие сбалансированности можно пояснить на графике.


Рис. 5.

Пусть ссуда в размере D 0 выдана на срок T . На протяжении этого срока в счет погашения задолженности производятся, допустим, два промежуточных платежа R 1 и R 2 , а в конце срока выплачивается остаток задолженности R 3 , подводящий баланс операции.

На интервале времени t 1 задолженность возрастает до величины D 1 . В момент t 1 долг уменьшается до величины K 1 = D 1 - R 1 и т.д. Заканчивается операция получением кредитором остатка задолженности R 3 . В этот момент задолженность полностью погашается.

Назовем график типа б) контуром финансовой операции . Сбалансированная операция обязательно имеет замкнутый контур, т.е. последняя выплата полностью покрывает остаток задолженности. Контур операции обычно применяется при погашении задолженности частичными промежуточными платежами.

С помощью последовательных частичных платежей иногда погашаются краткосрочные обязательства. В этом случае существуют два метода расчета процентов и определения остатка задолженности. Первый называется актуарным и применяется в основном в операциях со сроком более года . Второй метод назван правилом торговца . Он обычно применяется коммерческими фирмами в сделках со сроком не более года .

Замечание: При начислении процентов, как правило, используются обыкновенные проценты с приближенным числом дней временных периодов.

Актуарный метод

Актуарный метод предполагает последовательное начисление процентов на фактические суммы долга. Частичный платеж идет в первую очередь на погашение процентов, начисленных на дату платежа. Если величина платежа превышает сумму начисленных процентов, то разница идет на погашение основной суммы долга. Непогашенный остаток долга служит базой для начисления процентов за следующий период и т.д. Если же частичный платеж меньше начисленных процентов, то никакие зачеты в сумме долга не делаются. Такое поступление приплюсовывается к следующему платежу.

Для случая, показанного на рис. 5 б), получим следующие расчетные формулы для определения остатка задолженности:

K 1 =D 0 (1+t 1 i)-R 1 ; K 2 =K 1 (1+t 2 i)-R 2 ; K 2 (1+t 3 i)-R 3 =0,

где периоды времени t 1 , t 2 , t 3 - заданы в годах, а процентная ставка i - годовая.


Правило торговца

Правило торговца является другим подходом к расчету частичных платежей. Здесь возможны две ситуации.

1) Если срок ссуды не превышает, сумма долга с начисленными за весь срок процентами остается неизменной до полного погашения. Одновременно идет накопление частичных платежей с начисленными на них до конца срока процентами.

2) В случае, когда срок превышает год, указанные выше расчеты, делаются для годового периодазадолженности. В конце года из суммы задолженности вычитается наращенная сумма накопленных частичных платежей. Остаток погашается в следующем году.

При общем сроке ссуды T £ 1 алгоритм можно записать следующим образом

,

где S - остаток долга на конец срока,

D - наращенная сумма долга,

K - наращенная сумма платежей,

R j - сумма частичного платежа,

t j - интервал времени от момента платежа до конца срока,

m - число частичных (промежуточных) платежей.

Переменная сумма счета и расчет процентов

Рассмотрим ситуацию, когда в банке открыт сберегатель­ный счет, и сумма счета в течение срока хранения изменяется: денежные средства снимаются, делаются дополнительные взносы. Тогда в банковской практике при расчете процентов часто используют методику расчета с вычислением так называемых процентных чисел . Каждый раз, когда сумма на счете изменяется, вычисляется процентное число C j за прошедший период j , в течение которого сумма на счете оставалась неизменной, по формуле

,

где t j - длительность j -го периода в днях.

Для определения суммы процентов, начисленной за весь срок, все процентные числа складываются и их сумма делится на постоянный делитель D :

,

где K - временная база (число дней в году, т.е. 360 либо 365 или 366), i - годовая ставка простых процентов (в %).

При закрытии счета владелец получит сумму равную последнему значению суммы на счете плюс сумму процентов.

Пример 14.

Пусть 20 февраля был открыт счет до востребования в размере P 1 =3000 руб., процентная ставка по вкладу равнялась i =20% годовых. Дополнительный взнос на счет составил R 1 =2000 руб. и был сделан 15 августа. Снятие со счета в размере R 2 =-4000 руб. зафиксировано 1 октября, а 21 ноября счет был закрыт. Требуется определить сумму процентов и общую сумму, полученную вкладчиком при закрытии счета.

Решение.

Расчет будем вести по схеме (360/360). Здесь имеются три периода, в течение которых сумма на счете оставалась неизменной: с 20 февраля по 15 августа (P 1 =3000, t 1 =10+5*30+15=175), с 15 августа по 1 октября (P 2 = P 1 + R 1 =3000+2000=5000 руб., t 2

Сумма, выплачиваемая при закрытии счета, равна

P 3 +I=1000+447.22=1447 руб . 22 коп .

Теперь покажем связь этой методики с формулой простых процентов. Рассмотрим в алгебраическом виде представленный выше пример.

C умму, выплачиваемую при закрытии счета, найдем следующим образом

Таким образом, мы получили выражение, из которого следует, что на каждую сумму, добавляемую или снимаемую со счета, начисляются проценты с момента совершения соответствующей операции до закрытия счета. Эта схема соответствует правилу торговца, рассмотренному в разделе 6.2.

Изменение условий контракта

В практике часто возникает необходимость в изменении условий контракта: например, должник может попросить об отсрочке срока погашения долга или, напротив, изъявить желание погасить его досрочно, в ряде случаев может возникнуть потребность объединить (консолидировать) несколько долговых обязательств в одно и т.д. Во всех этих случаях применяется принцип финансовой эквивалентности старых (заменяемых) и новых (заменяющих) обязательств. Для решения задач по изменению условий контракта разрабатывается так называемое уравнение эквивалентности , в котором сумма заменяемых платежей, приведенных к какому-либо одному моменту времени, приравнивается сумме платежей по новому обязательству, приведенных к той же дате. Для краткосрочных контрактов применяются простые процентные ставки, а для средне- и долгосрочных - сложные ставки.

Основная цель обращения клиента, у которого есть сбережения, в банк заключается в том, чтобы сохранить и приумножить денежные средства. Чтобы выбрать из большого ассортимента предложений различных организаций наиболее выгодный вариант, нужно самостоятельно уметь рассчитывать будущую доходность вложений. Зачастую, варианты, которые на первый взгляд кажутся самыми выгодными и интересными, не приносят хорошего результата. Поэтому нужно уметь прогнозировать проценты по вкладу до совершения сделки.

Для расчетов доходности по вкладу используется простой и сложный методы начисления процентов. Каждый из них имеет свои особенности и «подводные камни», которые стоит учитывать. Рассмотрим подробнее, как пользоваться формулами для расчета процентов по вкладу , что означает каждая составляющая, и посчитаем на примерах эффективность каждого метода.

Формулы начисления процентов.

Доходность практически любого вклада можно рассчитать самостоятельно, зная методику расчета. Для этого нужно знать параметры будущего вложения, к которым относится:

  • Депозитная сумма.
  • Ставка (в %).
  • Периодичность процентного начисления.
  • Срок размещения денег.

Формула простых процентов.

Она используется тогда, когда начисляемый доход присоединяется к основному телу депозита в конце его срока или не присоединяется и выводится на текущий счет или пластиковую карточку. Этот порядок расчета стоит учесть, когда размещается солидная сумма на длительный срок. Обычно в данном случае банки применяют варианты размещения без капитализации, что понижает общую выгоду вкладчика.

Формула простого %:

Сумма % — это доход, полученный через i-ый промежуток времени.

Р – изначальный объем вложений.

t – срок вложения.

T – число дней в году.

Рассмотрим пример: разместим 100 000 рублей на полгода под 12%. Рассчитаем полученный доход:

Таким образом, через полгода со счета можно будет снять 105 950,68 руб.

Формула сложных процентов.

Она применяется реже в депозитной практике банка, но такие предложения найти можно. Для большинства вкладчиков они не являются привлекательными по причине того, что ставки по ним ниже, чем по продуктам, когда доход начисляется только по окончании действия депозитного договора. Периодичность присоединения дохода может быть разной: раз в месяц, раз в неделю, раз в квартал, каждый год. Она подразумевает под собой капитализацию или начисление «процентов на проценты».

Формула сложных %-ов:

P – изначальная сумма вклада.

i – депозитная годовая ставка.

k – число дней в периоде, через который начисляется доход.

T – число дней в году.

n – число капитализаций дохода в течение всего срока депозита.

Рассмотрим пример №1: разместим 100 000 рублей под 12% годовых на полгода с ежемесячной капитализацией.

Таким образом, благодаря ежемесячной капитализации, общий итог вложений оказался выгоднее, чем в варианте, когда проценты причисляются в конце срока.

Пример №2: разместим 100 000 рублей на 6 месяцев под 12% годовых с еженедельной капитализацией.


Полученное значение подтвердим через расчеты в Excel.

Пример №3: разместим 100 000 рублей на 1 год под 12% годовых с ежеквартальной капитализацией.

Полученное значение подтвердим через расчеты в Excel.

В дополнение к вышеизложенной статье, хотела бы добавить еще несколько полезных формул расчета разного вида процентов.
Начну с простого, но не менее полезного:

1). Формула расчета доли в процентном отношении.
Задано два числа: X1 и X2. Необходимо определить, какую долю в процентном отношении составляет число Х1 от Х2.
У = X1 / X2 * 100.

2). Формула расчета процента от числа.
Задано число X2. Необходимо вычислить число X1, составляющее заданный процент Y от Х2.

Х1 = Х2 * Y / 100.

3). Формула увеличения числа на заданный процент (сумма с НДС).
Задано число X1. Надо вычислить число X2, которое больше числа X1 на заданный процент Y. Используя формулу расчета процента от числа, получаем:

X2= X1 * (1 + Y / 100).

4). Формула вычисления исходной суммы (сумма без НДС).
Задано число X1, равное некому исходному числу X2 с прибавленным процентом Y. Надо вычислить число X2. Иными словами: знаем денежную сумму с НДС, надо вычислить сумму без НДС. Обозначим y = Y / 100, тогда:

X1= X2 + y * X2.
или

X1= X2 * (1 + y).
тогда

X2= X1 / (1 +y).
5). Формула уменьшения числа на заданный процент.
Задано число X1. Необходимо вычислить число X2, которое меньше числа X1 на заданный процент Y. Используя формулу расчета процента от числа, получаем:

X2= X1 - X1 * Y / 100.
либо же

X2= X1 * (1 - Y / 100).

6). Расчет процентов на банковский депозит. Формула расчета простых процентов.
Если проценты на депозит начисляются один раз в конце срока депозита, то сумма процентов вычисляется по формуле простых процентов.

Y = S + (S*Z*d/D)/100
Yp = (S*Z*d/D)/100
Где:
Y - сумма банковского депозита с процентами,
Yp - сумма процентов (доход),
S - первоначальная сумма (капитал),
Z - годовая процентная ставка,
d - количество дней начисления процентов по привлеченному вкладу,
D - количество дней в календарном году (365 или 366).

7). Расчет процентов на банковский депозит при начислении процента на процент. Формула расчета сложных процентов.
Если проценты на депозит начисляются несколько раз через равные промежутки времени и зачисляются во вклад, то сумма вклада с процентами вычисляется по формуле сложных процентов.

X = S * (1 + P*d/D/100)N

Где:


Y - годовая процентная ставка,

При расчете сложных процентов проще вычислить общую сумму с процентами, а потом вычислить сумму процентов (доход):

Sp = X - S = S * (1 + Y*d/D/100)N - S
или

Sp = S * ((1 + Y*d/D/100)N - 1)

8). Еще одна формула сложных процентов.
Если процентная ставка дана не в годовом исчислении, а непосредственно для периода начисления, то формула сложных процентов выглядит так.

X = S * (1 + Y/100)N

Где:
X - сумма депозита с процентами,
S - сумма депозита (капитал),
Y - процентная ставка,
N - число периодов начисления процентов.